Очистка углеродных нанотрубок. Свойства углеродных нанотрубок

Главная / Любовь

Размер: px

Начинать показ со страницы:

Транскрипт

1 ТЕХНИЧЕСКИЕ ИННОВАЦИИ УДК ББК 30.6 ФИЛЬТР НА ОСНОВЕ УГЛЕРОДНЫХ НАНОТРУБОК ДЛЯ ОЧИСТКИ СПИРТОСОДЕРЖАЩИХ ЖИДКОСТЕЙ Н.П. Поликарпова, И.В. Запороцкова, Т.А. Ермакова, П.А. Запороцков Проведены эксперименты по очистке спиртосодержащих жидкостей методами фильтрации и пропускания, установлена массовая доля углеродных нанотрубок, приводящая к наилучшему результату. Создан макет фильтра на основе наноматериала, заключенного в пространство между слоями пористого стекла и определены его конструкционные особенности. Поликарпова Н.П., Запороцкова И.В., Ермакова Т.А., Запороцков П.А., 2012 Ключевые слова: углеродные нанотрубки, спиртосодержащая жидкость, адсорбция, фильтр, пористое стекло, пористая керамика. Введение Очистка спиртосодержащих жидкостей, к которым относятся продукты пищевой промышленности водки, играет важную роль в процессе их производства. Каждый производитель пытается использовать максимально эффективные методы очистки спиртосодержащей жидкости от примесей и сивушных масел. Сивушные масла, альдегиды, минеральные соли и прочие примеси удаляют из продукта методом фильтрации, используя древесный уголь, кварцевый песок, серебряную пыль, платиновые фильтры, сухое молоко, яичный белок. Многие из производителей дорогих сортов водок повторяют очистку многократно, комбинируя различные варианты. Каждая последующая очистка еще сильнее избавляет продукт от сивушных масел и прочих примесей. Двойная или тройная степень очистки существенно улучшает вкусовые качества, но и ощутимо удорожает процесс изготовления. В настоящее время на ликеро-водочных предприятиях применяют различные методы очистки спиртосодержащей продукции. Самые распространенные из них это очистка с помощью угольных фильтров, очистка молоком и яичными белками, «серебряная фильтрация» и очистка золотом и драгоценными камнями. В работах И.В. Запороцковой и Н.П. Запороцковой представлены результаты теоретических расчетов адсорбционного взаимодействия углеродных нанотрубок (УНТ) с молекулами тяжелых органических спиртов, входящих в состав спиртосодержащих жидкостей в виде нежелательных примесей, и доказана возможность их сорбции на поверхности нанотруб. Это позволило предложить инновационный способ очистки водно-этанольных смесей, к которым относятся водки, с помощью углеродного наноматериала . Как известно, графитовые сорбенты и древесный уголь очищают продукт от вредных примесей на 60 %, молоко на 70 %, драгоценные металлы (серебро, золото) на 75 %. Применение же в качестве сорбирующего материала углеродных нанотрубок позволит очистить спиртосодержащую жидкость от примесей на 98 %. Также к преимуществам заявленных фильтров на основе УНТ можно отнести: 1) высокую производительность процесса при низкой себестоимости; 2) в десятки раз меньший объем адсорбирующего вещества; 3) отсутствие побочных эффектов от использования адсорбентов графитовой природы с сохранением и многократным увеличением активности процесса; Вестник ВолГУ. Серия 10. Вып

2 4) возможность селективной адсорбции. Следует отметить, что внедрение фильтра на основе наноматериалов в законченный цикл производства на заключительном этапе без принципиального изменения технологического процесса обеспечивает практически 100-процентную очистку продукта водно-этанольных смесей без существенного удорожания производства. 1. Определение оптимального количества углеродного наноматериала для очистки жидкостей Перед тем, как приступить непосредственно к лабораторным экспериментам по очистке спиртосодержащих жидкостей (водок отечественного производства), было необходимо определить оптимальное количество наноматериала, приводящего к желаемому эффекту высокой степени очистки. В качестве объекта исследований была выбрана водка «Выпьем за», относящаяся к классу обычных водок невысокой стоимости. Исследования жидкости проводили титриметрическим методом до момента, пока не была выявлена минимальная масса нанотрубок, необходимая для эффективной очистки 50 мл водки. Подбор проводили способом «от большего к меньшему», первоначальное количество углеродных нанотрубок составляло 1 г. Точность взвешивания УНТ была определена точностью используемых аналитических весов и составляла 0,0001 г. Уменьшение количества нанотрубок проводилось до фиксации момента, когда перестала уменьшаться щелочность водки. Согласно нормам ГОСТ Р «Водки и водки особые. Общие технические условия» , щелочность водки не должна превышать 2,5 3,0 мл. До очистки щелочность выбранной водки была равна 2,5 мл. Результаты выполненных титриметрических исследований представлены в таблице. Анализ результатов показал, что пропускание спиртосодержащей жидкости через фильтр с углеродными нанотрубками снижает показатель щелочности в среднем на 98 % (на 2,45 мл). Минимальным количеством необходимого наноматериала является 0,001 г, так как при уменьшении этого количества щелочность резко возрастает, а при большем количестве ее уменьшение незначительно. 2. Подбор материала для создания оболочки фильтра на основе углеродных нанотрубок В производстве водки в качестве фильтров можно использовать как фильтры с пористым стеклом, такие как фильтры Шотта, так и керамические фильтры. Эти пористые материалы могут быть использованы также как материалы для создания оболочки фильтра на основе углеродных нанотрубок. Рассмотрим особенности названных материалов. Пористое стекло стеклообразный пористый материал с губчатой структурой и содержанием оксида кремния SiO 2 около 96 % (масс.). Пористое стекло является результатом термической и химической обработки стекол особого состава. Пористые стекла могут быть получены только из стекол с достаточно высоким содержанием Na 2 O , в которых сосуществующие фазы после длительной тепловой обработки образуют взаимопроникающие друг в друга каркасы. Необходимым условием получения пористых стекол является также содержание в исходных стеклах не менее 40 % (масс.) диоксида кремния, обеспечивающее образование в стекле непрерывной пространственной сетки SiO 2 . Стеклянные фильтры это пластинки из размельченного и сплавленного стекла. Для их изготовления стекло размалывают в шаровых мельницах и просеивают при помощи набора сит. Стеклянный порошок спекают нагреванием в печи в металлических или керамических формах. Полученные пластинки впаивают в трубки, стаканы, воронки, тигли и другую посуду из стекла того же состава. Через такие пластинки можно фильтровать горячие растворы, концентрированные кислоты и разбавленные щелочи, так как такие фильтры устойчивы к действию агрессивных сред. Фильтрующие пластинки различают по пористости. В зависимости от размера пор изготавливают несколько классов фильтров. Стеклянные фильтры, или так называемые фильтры Шотта, выпускаются следующих типов: 1 размер пор составляет мкм, применяется для работы с крупнокристаллическими осадками; 7 6 Н.П. Поликарпова и др. Фильтр на основе углеродных нанотрубок

3 2 размер пор составляет мкм, применяется для работы с среднекристаллическими осадками; 3 размер пор составляет мкм, применяется для работы с мелкими кристаллическими осадками; 4 размер пор составляет 4 10 мкм, применяется для работы с очень мелкими кристаллическими осадками. Керамические мембраны это пористые керамические фильтры тонкой очистки, изготовленные спеканием металлокерамических материалов, таких как оксид алюминия, диоксид титана или циркония (рис. 1), при сверхвысоких температурах . Керамические мембраны обычно имеют асимметричную структуру, поддерживающую активный мембранный слой (рис. 2). Пористая керамика состоит из связанных частиц примерно одного размера, что создает однородный, проницаемый материал, обеспечивающий извилистые каналы для потока флюида. Наиболее часто для изготовления фильтров используются кремнезем и глинозем, хотя возможности выбора материала, размера и формы практически неограничены. Керамические фильтры обычно классифицируются по среднему диаметру пор или / и по проницаемости. Средний диаметр пор это средний минимальный диаметр пор, измеренный в микронах. Размеры мембран керамических фильтров: - микрофильтрация: 1,2 мкм 0,5 мкм 0,2 мкм 0,1мкм; - ультрафильтрация: 50 нм 20 нм. Макропористые материалы обеспечивают механическую устойчивость, в то время как активный мембранный слой обеспечивает разделение: микрофильтрация, ультрафильтрация, нанофильтрация. Керамические мембранные фильтры всегда работают в режиме тангенциальной фильтрации с оптимальными гидродинамическими режимами. Мутная жидкость проходит через мембранный слой внутри одно- или мультиканальной мембраны на большой скорости. Под действием трансмембранного давления (ТМД) микромолекулы и вода проходят вертикально через мембранный слой, образуя поток пермеата. Взвешенные вещества и высокомолекулярные соединения задерживаются внутри мембраны, образуя поток концентрата. Таким образом, происходит очистка загрязненных жидкостей. Керамические мембраны позволяют физическим методом разделить смеси компонентов без применения добавок. Внесение же в данные системы углеродного нанотрубного материала может дополнительно повысить эффективность подобного фильтра. 3. Макет фильтра на основе углеродных нанотрубок в оболочке из пористого стекла Для создания макета фильтра, через который осуществлялось вертикальное пропускание спиртосодержащей жидкости (рис. 3), использовались стеклянные фильтры Шотта, изготовленные из пористого стекла с помещенным внутрь углеродным наноматериалом углеродными нанотрубками, полученными на установке CVDomna по методике, описанной в работе И.В. Запороцковой . Фильтровальная часть использовавшихся фильтров представляет собой стеклянное пористое вещество Рис. 1. Пористая керамика Рис. 2. Керамический фильтр Вестник ВолГУ. Серия 10. Вып

4 с размером мембран 4 10 мкм. Для предварительного макета были использованы два фильтра Шотта разного диаметра, которые состыковывались между собой, образуя замкнутую фильтрующую систему. Между пластинами стекла, размеры пор которых составляли 4 10 мкм, помещался слой углеродных нанотрубок. Увеличенное изображение пористого стекла представлено на рисунке 4. Для обеспечения замкнутости углеродные нанотрубки дополнительно помещались между слоями фильтровальной бумаги. Исследуемый продукт водка «Выпьем за» свободно вертикально протекал через созданный таким образом фильтр под действием силы тяжести. Количество фильтрующего углеродного наноматериала и объем спиртосодержащей жидкости, протекающей через изготовленный фильтр, были выбраны в соответствии с полученными ранее результатами: 0,001 г УНТ для очистки 50 мл водки. Данные типы фильтров оказались достаточно эффективными для обеспечения свободного протекания через них водно-этанольной смеси без проникновения сквозь стекло углеродного наноматериала, что может быть объяснено случайным расположением пор в облочке. Выполненные далее исследования качества очищаемого продукта с использованием методов молекулярной спектроскопии и жидкостной хроматографии (рис. 5, 6) подтвердили высокую степень очистки водки от примесей высокомолекулярных спиртов сивушных масел: на спектрах отсутствуют пики, относящиеся к этим спиртам. Результаты титрования водки «Выпьем за» различным количеством углеродных нанотрубок Рис. 3. Макет фильтра с пластинами из пористого стекла Рис. 4. Вид стеклянной пластинки с размерами пор 4 10 мкм при увеличении х Н.П. Поликарпова и др. Фильтр на основе углеродных нанотрубок

5 Пропускание, % Волновое число, см -1 Рис. 5. ИК спектры водки «Выпьем за»: красный спектр до очистки; фиолетовый спектр после очистки пропусканием через фильтр с углеродными нанотрубками а Заключение Выполненные экспериментальные исследования доказали, что обработка водно-этанольной смеси углеродными нанотрубками способствует уменьшению содержания сивушных масел и других примесных веществ, сохраняя б Рис. 6. Хроматограммы водки «Выпьем за»: а) до очистки; б) после очистки пропусканием через фильтр с углеродными нанотрубками при этом содержание основного полезного компонента продукта этилового спирта. Созданный и апробированный макет фильтра на основе углеродных нанотрубок, заключенных в оболочку из пористого стекла, может быть использован в качестве основы для создания промышленного фильтра. Дальнейшие исследования Вестник ВолГУ. Серия 10. Вып

6 будут направлены на создание макета фильтра с керамической оболочкой, меньшие размеры пор которого (по сравнению с порами стеклянной оболочки) могут обеспечить лучшую защиту очищаемого продукта от попадания в него углеродных наночастиц. СПИСОК ЛИТЕРАТУРЫ 1. Беркман, А. С. Пористая проницаемая керамика / А. С. Беркман. М. : Госстройиздат, с. 2. Васильев, В. П. Аналитическая химия. Титриметрические и гравиметрические методы анализа: учебник / В. П. Васильев. М. : Дрофа, с. 3. Гармаш, Е. П. Керамические мембраны для ультра- и микрофильтрации / Е. П. Гармаш, Ю. Н. Крючков, В. П. Павликов // Стекло и керамика С ГОСТ Р Водки и водки особые. Общие технические условия. Государственный стандарт Российской Федерации. М. : Госстандарт России, с. 5. Запороцкова, И. В. Перспективные наноматериалы на основе углерода / И. В. Запороцкова, Л. В. Кожитов, В. В. Козлов // Вестн. Волгогр. гос. ун-та. Сер. 10, Инновационная деятельность С Запороцкова, И. В. Сорбционная активность углеродных нанотрубок как основа инновационной технологии очистки водно-этанольных смесей / И. В. Запороцкова, Н. П. Запороцкова, Т. А. Ермакова // Вестн. Волгогр. гос. ун-та. Сер. 10, Инновационная деятельность С Запороцкова, И. В. Углеродные и неуглеродные наноматериалы и композитные структуры на их основе: строение и электронные свойства / И. В. Запороцкова. Волгоград: Из-во ВолГУ, с. 8. Исследование влияния углеродных нанотруб на процесс очистки спиртосодержащих жидкостей / И. В. Запороцкова [и др.] // Вестн. Волгогр. гос. ун-та. Сер. 10, Инновационная деятельность С Казицына, Л. А. Применение УФ-, ИК-, ЯМР-спектроскопии в органической химии: учеб. пособие для вузов / Л. А. Казицына, Н. Б. Куплетская. М. : Высш. шк., с. 10. Сычев, С. Н. Высокоэффективная жидкостная хроматография как метод определения фальсификации и безопасности продукции / С. Н. Сычев, В. А. Гаврилина, Р. С. Мурзалевская. М. : ДеЛи принт, с. 11. Химическая энциклопедия / под ред. И. Л. Кнунянца. М. : Советская энциклопедия, Dresselhaus, M. S. / M. S. Dresselhaus, G. Dresselhaus, P. Avouris // Сarbon nanotubes: synthesis, structure, properties, and application. Springer-Verlag, p. 13. Zaporotskova, I. V. Active properties of nanotubular carbon structures with respect to heavy organic molecules / I. V. Zaporotskova // Nanoscience & nanotechnology-2011: Book of abstract. Frascati National Laboratories INFN. Frascati, Sept , Frascati: INFN, P Zaporotskova, N. P. Investigation of carbon nanotube activity to heavy organic molecules / N. P. Zaporotskova, I. V. Zaporotskova, T. A. Ermakova // Fullerenes and Atomic clusters. Abstracts of invited lectures & contributed papers. St.-Peterburg, July 4 8, St.-Peterb., P THE FILTER ON THE BASIS OF CARBON NANOTUBES FOR PURIFICATION OF ALCOHOL-CONTAINING LIQUIDS N.P. Polikarpova, I.V. Zaporotskova, T.A. Ermakova, P.A. Zaporotskov Experiments on purification of alcohol-containing liquids by filtration and transmission methods are made, the mass fraction of carbon nanotubes leading to the best result is established. The filter model on the basis of a nanomaterial concluded in space between layers of porous glass is created, and its constructional features are defined. Key words: carbon nanotubes, alcohol-containing liquids, adsorption, filter, porous glass, porous ceramics. 8 0 Н.П. Поликарпова и др. Фильтр на основе углеродных нанотрубок


Инженерные системы и экология УДК 628.316.12 ИСПОЛЬЗОВАНИЕ ПРИРОДНОГО МИНЕРАЛА В КАЧЕСТВЕ СОРБЕНТА ФЕНОЛА ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД А. В. Юрко, А. Ю. Комаров, В. А. Романов Волгоградский государственный

Тема проекта: «Очистка родниковой воды» Автор(ы): Рудюк Елена Школа: ГБОУ СОШ 2103 СП «СОШ 125» Класс: 3 Руководитель: Хромова Юлия Михайловна ЦЕЛЬ: узнать, какие фильтры для очистки воды существуют ЗАДАЧИ

УДК 21474 ПРИМЕНЕНИЕ МЕМБРАННЫХ ТЕХНОЛОГИЙ В БИОЛОГИЧЕСКОЙ ОЧИСТКЕ СТОЧНЫХ ВОД Вязьмикина К.И., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Экология и промышленная безопасность»

ФИЗИКА. МЕХАНИКА. ХИМИЯ УДК 666.9.017:536.4:539.21:536.12 (575.2) (04) ВЛИЯНИЕ ТЕПЛОФИЗИЧЕСКИХ ПРОЦЕССОВ НА ПРОНИЦАЕМОСТЬ ПОРИСТОЙ ВОЛЛАСТОНИТОВОЙ КЕРАМИКИ А.Н. Айтимбетова Установлено влияние на проницаемость

Ротационная фильтрация Микрофильтрация 1 50 мкм Ультрафильтрация 0,007 1 мкм.ru О компании Проектно-производственный холдинг «Энергетические машины» специализируется на проектировании и изготовлении котельного

УДК 661.183 Е. А. Нескоромная, А. В. Бабкин, А. Е. Бураков, И. В. Романцова, А. Е. Кучерова СОЗДАНИЕ ГИБРИДНЫХ УГЛЕРОДНЫХ НАНОСОРБЕНТОВ КОМПЛЕКСНОЙ ОЧИСТКИ ВОДНЫХ СРЕД На сегодняшний день в мире очень

2 Методы анализа: 1. Химические методы. Химическое равновесие и его использование в анализе. Кислотно-основное равновесие. Сила кислот и оснований, закономерности их изменения. Функция Гаммета. Вычисление

ОТЧЕТ по гранту 16-03-717 за 2016 год К важнейшим результатам, полученным нами в результате работы в 2016 году по гранту 16-03-717, можно отнести следующее: 1. Удалось распространить принцип минимума интенсивности

Вопросы для контроля в семестре 1. Что означает относящийся к созданию нанообъектов термин "Top down"? 2. Что означает относящийся к созданию нанообъектов термин "Bottom up"? 3. Какой принцип стабилизации

Будущее за ротационной фильтрацией Проектно-производственный холдинг «Энергетические машины» предлагает решение проблемы непрерывной микро- и ультрафильтрации с помощью так называемых «технологий поперечного

Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа 16» с изменениями от 16.12.2016 г. РАБОЧАЯ ПРОГРАММА по предмету «химия» 8-9 класс (ФК ГОС) 1.Требования к уровню

КОНИЧЕСКАЯ ЦЕНТРИФУГА ДЛЯ ОЧИСТКИ СОЕВОГО МАСЛА. ИСПОЛЬЗОВАНИЕ ЦЕОЛИТОВОЙ ФИЛЬТРОВАЛЬНОЙ ПЕРЕГОРОДКИ В.И. Земсков, Г.М. Харченко Приведена экспериментальная зависимость плотности и вязкости соевого масла

УДК 502.654 Клещенко В.В. Науч. рук. Басалай И. А. Методы пылегазоочистки и оборудование, используемые при производстве керамических материалов Белорусский национальный технический университет При производстве

Опыт реализации инновационных энергосберегающих технологий, на основе наномодифицированной проницаемой керамики в процессах водоподготовки и очистки сточных вод 1 service and products НТЦ Бакор 25 лет

УДК 544.723.212 Е. В. Парамонова, А. П. Суздальцев, О. Ю. Шишкина, Ю. В. Чернопятова ПРИРОДНЫЕ СОРБЦИОННЫЕ МАТЕРИАЛЫ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ Сточные воды промышленных производств

Рабочая программа элективного курса по химии в профильном классе является компилятивной. Данный элективный курс предназначен для учащихся 0 классов выбирающих естественнонаучное направление, рассчитан

Лекция 6 Хроматографические методы анализа План лекции 1. Понятия и термины хроматографии. 2. Классификация хроматографических методов анализа. Хроматографическое оборудование. 3. Виды хроматографии: газовая,

Задание 6 (-ой семестр). Адсорбция. Хроматография. Вариант. Часть. Приведите примеры поверхностно-активных веществ (ПАВ)? Схематично изобразите, как ориентируются молекулы ПАВ на границе раздела вода-воздух.

Лекция 16 Обратный осмос и ультрафильтрация Методы обратного осмоса и ультрафильтрации заключаются в фильтровании растворов через специальные полупроницаемые мембраны. При этом либо мембрана пропускает

ОЧИСТКА СТОЧНЫХ ВОД ОТ ФЕНОЛА С ИСПОЛЬЗОВАНИЕМ РАЗЛИЧНЫХ СОРБЦИОННЫХ МАТЕРИАЛОВ 48 Д.Е. Плешивцева Содержащиеся в сточных водах органические вещества, попадая в значительных количествах в водоёмы или скапливаясь

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка» СИНТЕЗЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Лабораторный практикум Минск

8а домашнее задание 04.02.2019 География контурная карта стр. 8 Физкультура П.18 стр 125-126 Значение и история развития волейбола Литература Стр. 62-68 (статьи учебника прочитать), стр. 68 (стихотворение

Лабораторная работа 5 СПИРТЫ ЦЕЛЬ РАБОТЫ: изучить некоторые физические и химические свойства предельных одноатомных спиртов. Отметить качественную реакцию на многоатомные спирты. Реактивы и материалы:

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ РАБОТЫ В ОБЛАСТИ СОЗДАНИЯ ТЕХНОЛОГИЙ С ИНТЕГРИРОВАННЫМИ МЕМБРАННЫМИ ПРОЦЕССАМИ: ОТ КОНЦЕПЦИИ ДО ПРОМЫШЛЕННЫХ ЛИНИЙ Актуализация 02.2014 ООО «ЭЛЕВАР-ГРУПП» ОПЫТ СОЗДАНИЯ ТЕХНОЛОГИЙ

Вопросы обеспечения материалами высокотехнологичных отраслей России Абрамов А.О,. Гришко Н.Е. [email protected] Научный руководитель: к.т.н. Дитц А.А., доцент кафедры ТСН ИФВТ НИ ТПУ Объем мирового

УДК 621.762:669.2 В.М. КЕТОВ, научн. сотрудн., Е.И. ДЕМЧЕНКО, научн. сотрудн., А.А. ВНУКОВ, научн. сотрудн., Национальная металлургическая академия Украины, г. Днепропетровск, Украина ИССЛЕДОВАНИЕ ВЛИЯНИЯ

МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Aqua Ideal Детальная характеристика модулей SW300 и SW100 www.ecohitek.com Внешний вид Модуль SW300 Схематическое изображение внутренних компонентов Технические характеристики: Размеры: высота 470 мм ширина

4024 Энантиоселективный синтез этилового эфира (1R,2S)- цис-гидроксициклопентанкарбоновой кислоты H yeast C 8 H 12 3 C 8 H 14 3 (156.2) (158.2) Классификация Типы реакций и классы веществ Восстановление,

1815 Взаимодействие разбавленных кислотных растворов с бариево-боратным стеклом Керефов А.Х. ([email protected]), Калинина Н.В., Ашхотов О.Г. Кабардино-Балкарский государственный университет, г. Нальчик

УДК 681.5 ПРОЕКТИРОВАНИЕ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ ПРОЦЕССОМ ОЧИСТКИ МЕТАНА Ефремкин С.И., Медведева Л.И. Волжский политехнический институт (филиал) ВолгГТУ E-mail: [email protected] В статье

КАТАЛИТИЧЕСКОЕ ГИДРИРОВАНИЕ СМОЛОСОДЕРЖАЩИХ ОСТАТКОВ КОКСОХИМИЧЕСКОГО ПРОИЗВОДСТВА НА Pt/Pd КАТАЛИЗАТОРЕ Маринин А.А. студент группы ХТОВ-13, Меркулов В.В. кандидат химических наук, профессор РАЕ, старший

Аннотация проекта (ПНИЭР), выполняемого в рамках ФЦП «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 2020 годы» Номер Соглашения о предоставлении

ИССЛЕДОВАНИЕ ПРОЦЕССА УЛЬТРАФИЛЬТРАЦИИ СУЛЬФИТНОГО ЩЕЛОКА А. П. Вишнякова, Т.Ф. Личутина, О.С. Бровка Институт экологических проблем Севера УрО РАН, г. Архангельск. Перспективность использования многотоннажных

ПОЛУЧЕНИЕ КОМПОЗИТНЫХ НАНОСТРУКТУР НА ОСНОВЕ ПОРИСТОЙ МАТРИЦЫ АНОДИРОВАННОГО АЛЮМИНИЯ Русинов А.П., Мухин А.А. Оренбургский государственный университет, г. Оренбург Бурное развитие микроэлектроники и информационных

ВЛИЯНИЕ УГОЛЬНЫХ ФИЛЬТРОВ НА ТОКСИЧНОСТЬ ТАБАЧНОГО ДЫМА СИГАРЕТ Дурунча Н.А.; Остапченко И.М. ФГБНУ «Всероссийский научно-исследовательский институт табака, махорки и табачных изделий», г. Краснодар Важнейшим

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка» СИНТЕЗЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Лабораторный практикум Минск

П\п Тема Урок I II III 9 класс, 2014-2015 учебный год, базовый уровень, химия Тема урока Колво часов Примерные сроки Знания, умения, навыки. Теория электролитической диссоциации (10 часов) 1 Электролиты

УДК 661.66-022.53 С. Ю. Горский ГАЗОФАЗНОЕ ОКИСЛЕНИЕ УГЛЕРОДНЫХ НАНОТРУБОК: ПРОБЛЕМЫ ПРОМЫШЛЕННОЙ РЕАЛИЗАЦИИ Окисление является одним из наиболее простых, доступных и распространенных способов ковалентной

Задание 7. Коллоидная химия. Вариант 1. Во сколько раз отличаются радиусы частиц двух монодисперсных суспензий (1 и 2) одинаковой 1. природы, если отношение скоростей седиментации равно U 1 /U 2 = 25?

07/2017:20408 2.4.8. ТЯЖЕЛЫЕ МЕТАЛЛЫ В методах, приведенных ниже, используют тиоацетамидный реактив Р. Допускается использование раствора натрия сульфида Р1 (0,1 мл). Если указанная в частной фармакопейной

СТАНДАРТ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ХИМИИ Изучение химии на ступени основного общего образования направлено на достижение следующих целей: освоение важнейших знаний об основных понятиях и законах

Калабеков О.А., Кудряшов А.Ф., Кудряшова Н.В., Москалёв Е.В. Разработка технологии промышленного получения вспененного графита и создание ассортимента бактерицидных фильтров на его основе для применения

Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка» СИНТЕЗЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ Лабораторный практикум Минск

Задание 1. Ученые считают, что в окружающей нас природе практически отсутствуют индивидуальные чистые вещества, поскольку все они, хоть и в ничтожных долях, содержат примеси. Как природные, так и искусственно

УДК 504.06 Получение сорбентов из растительных отходов и их применение в средозащитных технологиях Тольяттинский государственный университет Валиуллина Венера, студент, Чадаева Татьяна, студент Заболотских

ПРИМЕРНОЕ КАЛЕНДАРНОЕ ПЛАНИРОВАНИЕ УЧЕБНОГО МАТЕРИАЛА ХИМИЯ-8 2014/2015 учебный год Составлено на основании государственной программы Е.Е. Минченкова при 2 часах в неделю (70 часов за год) Работы I полугодие

НЕМНОГО О КОМПАНИИ SULPHURNET Мы в Sulphurnet сосредоточили свою деятельность на процессах переработки серы в установках по производству серной кислоты и повторной переработки серы. Sulphurnet понимает

УДК 54 ПОЛУЧЕНИЕ ИТТРИЙ-АЛЮМИНИЕВОГО ГРАНАТА АНИОНООБМЕННЫМ СИНТЕЗОМ Данилина А. А., научный руководитель канд. хим. наук Сайкова С. В. Сибирский федеральный университет Функциональные материалы на основе

Достижения современных технологий для фильтрации жидкостей. Фильтр картон и кизельгуры (диатомиты) в настоящее время это наиболее распространенные и используемые фильтр материалы в фармацевтической и пищевойпромышленности.

Муниципальное бюджетное общеобразовательное учреждение «Усть-Кяхтинская средняя общеобразовательная школа» Практические работы по химии 8 класс (34 часа) Халимова Наталья Николаевна Усть-Кяхта 2017 Программа

Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа 11» Рассмотрено на заседании педагогического совета Протокол от Согласовано Зам. директора по УВР М.Н.Шабурова

УДК 61.7 ЛИТЕЙНЫЕ ТИГЛИ НА МЕХАНОАКТИВИРОВАННЫХ УГЛЕРОДСОДЕРЖАЩИХ ОГНЕУПОРНЫХ КОМПОЗИЦИЯХ Чупров И. В., Ширай А. М., научный руководитель д-р техн. наук Мамина Л. И., канд. техн. наук Баранов В. Н., канд.

Нестандартные задачи по химии: от простого к сложному В.В. Еремин Химический факультет МГУ Университетские субботы. 03 октября 2015 1 Необычная массовая доля Определите формулу углеводорода, в котором

9 s 1. Определите энергию Гиббса (G) поверхности капель водяного тумана массой 4г при 293 К, если поверхностное натяжение воды 72,7 мдж/м 2, плотность воды 0,998 г/см 3, дисперсность частиц 50 мкм 1.

Из практических способов использования керамики состоит в изготовлении деталей поршня из металло- или полимерокомпозиционных материалов. Матрицей (основой) первого типа материалов является алюминий или

УДК 628.35+532.528 АЛЬТЕРНАТИВНЫЕ МЕТОДЫ ОБЕЗЖЕЛЕЗИВАНИЯ СТОЧНЫХ ВОД ПРЕДПРИЯТИЙ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВДСТВА Черных О.И., научный руководитель канд. техн. наук Дубровская О.Г. Сибирский Федеральный Университет

ЭКЗАМЕНАЦИОННЫЕ БИЛЕТЫ ГОСУДАРСТВЕННОЙ ИТОГОВОЙ АТТЕСТАЦИИ ПО ХИМИИ ПО ОСНОВНЫМ ОБРАЗОВАТЕЛЬНЫМ ПРОГРАММАМ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ в 2019 году 1. Периодический закон и периодическая система химических

МИНИСТЕРСТВО ЗДРАВОО ОХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИИ ФАРМАК КОПЕЙНАЯ СТАТЬЯ Я Глицерин Глицерин Glycerolum ФС.2.2.00 006.15 Взамен В ФС 42-2202-99 Пропан-1,2,3-триол С 3 H 8 O 3 М. м. 92,09 Содержит не

Вариант 1. 1 При уменьшении концентрации новокаина в растворе с 0,2 моль/л до 0,15 моль/л поверхностное натяжение возросло с 6,9 10-2 н/м до 7,1 10-2 н/м. У раствора кокаина с 6,5 10-2 до 7,0 10-2 н/м.

Оборудование лаборатории химии Оборудование Наименования Количество ОБОРУДОВАНИЕ СЕЙФЫ ЛАБОРАТОРНАЯ ПОСУДА, ПРИБОРЫ И ОБОРУДОВАНИЕ ДЛЯ ДЕМОНСТРАЦИЙ Мойка для мытья химической посуды Лабораторные столы

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа 2 Принято с пролонгацией: Педагогическим советом Протокол 1 от «30» августа 2016 г. РАБОЧАЯ ПРОГРАММА учебный предмет

ТЕХНИЧЕСКИЕ ИННОВАЦИИ УДК 539.2.21 ББК 30.6 ОБ АДСОРБЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА НА ВНЕШНЕЙ ПОВЕРХНОСТИ БОРНОЙ И БОРОНИТРИДНОЙ НАНОТРУБ 1 И.В. Запороцкова, Е.В. Перевалова, С.В. Борознин В связи с возросшим

1 Данная рабочая программа ориентирована на обучающихся 9 класса по программе основного общего образования (базовый уровень) по ФКГОС. Рабочая программа рассчитана на 68 часов в год, 2 часа в неделю. базисного

Углеродные нанотрубки - завтрашний день инновационных технологий. Производство и внедрение нанотубуленов позволит улучшить качества товаров и изделий, значительно снизив их вес и увеличив прочность, а также наделив новыми характеристиками.

Углеродные нанотрубки или тубулярная наноструктура (нанотубулен) - это искусственно созданные в лабораторных условиях одно или многостенные полые цилиндрические структуры, получаемые из атомов углерода и обладающие исключительными механическими, электрофизическими и физическими свойствами.

Углеродные нанотрубки получаются из атомов углерода и имеют форму трубок или цилиндров. Они очень маленькие (на наноуровне), с диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров. Углеродные нанотрубки состоят из графита, но обладают другими, не свойственными графиту характеристиками. Они не существуют в природе. Их происхождение имеет искусственную основу. Тело нанотрубок синтетическое, создаваемое людьми самостоятельно от начала до конца.

Если посмотреть на увеличенную в миллион раз нанотрубку, то можно увидеть вытянутый цилиндр, состоящий из равносторонних шестиугольников с атомами углерода на своих вершинах. Это свёрнутая в трубку графитовая плоскость. От хиральности нанотрубки зависят её физические характеристики и свойства.

Увеличенная в милион раз нанотрубка представляет собой вытянутый цилиндр, состоящий из равносторонних шестиугольников с атомами углерода на своих вершинах. Это свёрнутая в трубку графитовая плоскость

Хиральность (англ. chirality) - свойство молекулы не совмещаться в пространстве со своим зеркальным отражением.

Если попонятнее, то хиральность - это когда сворачиваешь, например, лист бумаги ровно. Если наискось, то это уже ахиральность. Нанотубулены могут иметь однослойную и многослойную структуры. Многослойная структура - это ничто иное, как несколько однослойных нанотрубок, «одетых» одна на одну.

История открытия

Точная дата открытия нанотрубок и их первооткрыватель неизвестны. Эта тема является пищей для споров и рассуждений, так как существует множество параллельных описаний этих структур учёными из разных стран. Основная сложность в идентификации первооткрывателя заключается в том, что нанотрубки и нановолокна, попадая в поле зрения учёных, длительное время не привлекали их пристального внимания и тщательно не исследовались. Существующие научные работы доказывают, что возможность создания нанотрубок и волокон из углеродсодержащих материалов теоретически допускалась ещё во второй половине прошлого столетия.

Основная причина, по которой длительное время не проводились серьёзные исследования микронных углеродных соединений, заключается в том, что на тот момент учёные не обладали достаточно мощной научной базой для исследований, а именно не было оборудования, способного в нужной степени увеличивать объект изучения и просвечивать их структуру.

Если расположить события по исследованию наноуглеродистых соединений в хронологическом порядке, то первое свидетельство приходится на 1952 год, когда советскими учёными Радушкевичем и Лукьяновичем было обращено внимание на нановолокнистую структуру, образованную при разложении термическим способом оксида углерода (русское название - окись). Наблюдаемая с помощью электронно-микроскопического оборудования структура имела волокна диаметром около 100 нм. К сожалению, дальше фиксации необычной наноструктуры дело не пошло и дальнейших исследований не последовало.

После 25 лет забвения начиная с 1974 года информация о существовании микронных трубчатых структур из углерода начинает попадать в газеты. Так, группой японских учёных (Т. Койяма, М. Эндо, А. Оберлин) во время исследований в 1974–1975 гг. были представлены широкой публике результаты ряда своих исследований, в которых содержалось описание тонких трубок с диаметром менее 100 Å, которые были получены из паров при конденсации. Также образование пустотелых структур с описанием строения и механизма образования, полученных при исследовании свойств углерода, описаны советскими учёными института катализа СО АН СССР в 1977 году.

Å (Агстрём) - единица измерения расстояний, равная 10−10 м. В системе СИ единицей, близкой по величине к ангстрему, является нанометр (1 нм = 10 Å).

Фуллерены - полые, сферообразные молекулы в форме шара или мяча для регби.


Фуллерены - четвёртая, ранее неизвестная, модификация углерода, открытая английским химиком и астрофизиком Харолдом Крото

И только после использования в своих научных исследованиях новейшего оборудования, позволяющего детально рассматривать и просвечивать углеродную структуру нанотрубок, японским учёным Сумио Иджимой (Sumio Iijima) в 1991 году были проведены первые серьёзные исследования, в результате которых удалось получить опытным путём углеродные нанотрубки и детально их исследовать.

В своих исследованиях профессор Иджима для получения опытного образца воздействовал на распылённый графит электродуговым разрядом. Прототип был тщательно замерен. Его размеры показали, что диаметр нитей (каркаса) не превышает нескольких нанометров, при длине от одного до нескольких микрон. Изучая структуру углеродной нанотрубки, учёным было установлено, что изучаемый объект может иметь от одной до нескольких слоёв, состоящих из графитовой гексагональной сетки на основе шестиугольников. При этом концы нанотрубок структурно напоминают рассечённую надвое половинку молекулы фуллерена.

На момент проведения вышеуказанных исследований уже существовали работы таких известных в своей области учёных, как Джонса, Л.А. Чернозатонского, М.Ю. Корнилова, предсказывающих возможность образования данной аллотропной формы углерода, описывающих её строение, физические, химические и прочие свойства.


Многослойная структура нанотрубки это ничто иное, как несколько однослойных нанотубуленов, «одетых» одна на одну по принципу русской матрёшки

Электрофизические свойства

Электрофизические свойства углеродных нанотрубок находятся в стадии самого пристального изучения учёными сообществами всего мира. Проектируя нанотрубки в определённых геометрических соотношениях, можно придать им проводниковые или полупроводниковые свойства. Например, алмаз и графит являются углеродом, но вследствие различия в молекулярной структуре обладают различными, а в некоторых случаях противоположными свойствами. Такие нанотрубки называют металлическими или полупроводниковыми.

Нанотрубки, которые проводят электрический ток даже при абсолютном нуле температур, являются металлическими. Нулевая проводимость электрического тока при абсолютном нуле, которая возрастает с повышением температуры, указывает на признак полупроводниковой наноструктуры.

Основная классификация распределяется по способу сворачивания графитовой плоскости. Способ сворачивания обозначается двумя числами: «m» и «n», которые задают направление сворачивания по векторам графитовой решётки. От геометрии сворачивания графитовой плоскости зависят свойства нанотрубки, например, угол скручивания непосредственно влияет на их электрофизические свойства.

В зависимости от параметров (n, m) нанотрубки бывают: прямые (ахиральные), зубчатые («кресло»), зигзагообразные и спиральные (хиральные). Для расчёта и планирования электропроводности используют формулу соотношений параметров: (n-m)/3.

Целое число, получаемое при расчёте, свидетельствует о проводимости нанотрубки металлического типа, а дробное - полупроводниковой. Например, металлическими являются все трубки типа «кресло». Углеродные нанотрубки металлического типа проводят электрический ток при абсолютном нуле. Нанотубулены полупроводникового типа обладают нулевой проводимостью при абсолютном нуле, которая возрастает с повышением температуры.

Нанотрубки с металлическим типом проводимости ориентировочно могут пропускать миллиард ампер на квадратный сантиметр. Медь, являясь одним из лучших металлических проводников, уступает нанотрубкам по этим показателям более чем в тысячу раз. При превышении предела проводимости происходит нагрев, который сопровождается плавлением материала и разрушением молекулярной решётки. С нанотубуленами при равных условиях этого не происходит. Это объясняется их очень высокой теплопроводностью, которая превышает показатели алмаза в два раза.

По показателям прочности нанотубулен также оставляет другие материалы далеко позади. Он прочнее самых прочных сплавов стали в 5–10 раз (1,28–1,8 ТПа по модулю Юнга) и обладает упругостью в 100 тысяч раз выше чем каучук. Если сравнить показатели предела прочности, то они превышают аналогичные прочностные характеристики качественной стали в 20–22 раза!

Как получают УН

Нанотрубки получают высокотемпературным и низкотемпературным способами.

К высокотемпературным можно отнести способы лазерной абляции, солярной технологии или электродугового разряда. Низкотемпературный способ вобрал в себя химическое осаждение из паровой фазы с использованием каталитического разложения углеводородов, газофазное каталитическое выращивание из монооксида углерода, производство путём электролиза, термообработка полимера, местный низкотемпературный пиролиз или местный катализ. Все способы сложны для понимания, высокотехнологичны и очень затратны. Производство нанотрубок может себе позволить только крупное предприятие с мощной научной базой.

Упрощённо, процесс получения нанотрубок из углерода дуговым способом выглядит следующим образом:

В нагретый до определённой температуры с замкнутым контуром реактор через инъекционный аппарат вводится плазма в газообразном состоянии. В реакторе, в верхней и нижней части, устанавливаются магнитные катушки, одна из которых является анодом, а другая катодом. На магнитные катушки подаётся постоянный электрический ток. На находящуюся в реакторе плазму воздействуют электрической дугой, которую вращают и магнитным полем. Под действием высокотемпературной электроплазменной дуги с поверхности анода, который состоит из углеродсодержащего материала (графита), испаряется или «выщёлкивается» углерод и конденсируется на катоде в виде углеродистых нанотрубок, содержащихся в осадке. Для того чтобы атомы углерода имели возможность конденсироваться на катоде, температуру в реакторе снижают. Даже краткое описание этой технологии позволяет оценить всю сложность и затратность получения нанотубуленов. Пройдёт ещё немало времени, прежде чем процесс производства и применения станет доступным для большинства предприятий.

Фотогалерея: Схема и оборудование для получения нанотрубок из углерода

Установка по синтезу одностенных углеродных нанотрубок электродуговым способом Научная установка небольшой мощности для получения тубулярной наноструктуры
Низкотемпературный способ получения

Установка для получения длинных углеродных нанотрубок

Токсичны ли?

Однозначно, да.

В процессе лабораторных исследований учёные пришли к выводу, что углеродные нанотрубки негативно влияют на живые организмы. Это, в свою очередь, подтверждает токсичность нанотрубок, и все реже приходится учёным сомневаться в этом немаловажном вопросе.

Как показали исследования, прямое взаимодействие углеродных нанотрубок с живыми клетками приводит к их гибели. Особенно однослойные нанотрубки обладают сильной противомикробной активностью. Опыты учёные начали проводить на распространённой культуре царства бактерий (кишечная палочка) Е-Соli. В процессе исследований были применены однослойные нанотрубки диаметром от 0,75 до 1,2 нанометров. Как показали проведённые опыты, в результате воздействия углеродных нанотрубок на живую клетку происходит повреждение механическим способом клеточных стенок (мембран).

Нанотрубки, получаемые другими способами, содержат в себе большое количество металлов и других токсичных примесей. Многие учёные предполагают, что сама токсичность углеродных нанотрубок не зависит от их морфологии, а связана напрямую с примесями, содержащимися в них (нанотрубках). Однако проведённые работы учёных из Йеля в области исследования нанотрубок показали ошибочное представление многих сообществ. Так, бактерии кишечной палочки (Е-Соli) в процессе исследований подвергались обработке однослойными углеродными нанотрубками в течение одного часа. В результате большая часть Е-Соli погибла. Данные исследования в области наноматериалов подтвердили их токсичность и негативное воздействие на живые организмы.

Учёные пришли к выводу, что наиболее опасными являются однослойные нанотрубки, это связано с пропорциональным отношением длины углеродной нанотрубки к её диаметру.

Различные исследования в части влияния углеродных нанотрубок на организм человека привели учёных к выводу о тождественном воздействии, как и в случае попадания асбестовых волокон в организм. Степень негативного воздействия асбестовых волокон напрямую зависит от их размера: чем меньше, тем отрицательное воздействие сильнее. А в случае углеродных нанотрубок и сомневаться не приходится в их отрицательном влиянии на организм. Попадая в организм вместе с воздухом, нанотрубка через плевру оседает в грудной клетке, тем самым вызывая тяжёлые осложнения, в частности, раковые опухоли. Если проникновение в организм нанотубуленов происходит через пищу, то они оседают на стенках желудка и кишечника, вызывая различные заболевания и осложнения.

В настоящее время учёными проводятся исследования по вопросу биологической совместимости наноматериалов и поиску новых технологий безопасного производства углеродных нанотрубок.

Перспективы

Углеродные нанотрубки занимают широкую сферу применения. Это связано с тем, что они имеют молекулярную структуру в виде каркаса, позволяющую тем самым иметь свойства, отличающиеся от алмаза или графита. Именно благодаря своим отличительным чертам (прочность, проводимость, изгиб) углеродные нанотрубки применяются чаще, в сравнении с другими материалами.

Применяется это углеродное изобретение в электронике, оптике, в машиностроении и т. д. Углеродные нанотрубки используют как добавки к различным полимерам и композитам для усиления прочности молекулярных соединений. Ведь всем известно, что молекулярная решётка углеродных соединений обладает невероятной прочностью, тем более в чистом виде.

Углеродные нанотрубки используются также в производстве конденсаторов и различного рода датчиков, анодов, которые необходимы для изготовления батареек, в роли поглотителя электромагнитных волн. Широкое применение это углеродное соединение нашло в сфере изготовления телекоммуникационных сетей и жидкокристаллических дисплеев. Также нанотрубки используются в качестве усилителя каталитических свойств в производстве осветительных устройств.

Коммерческое применение

Рынок Применение Свойства составов на основе углеродных нанотрубок
Автомобили Детали топливной системы и топливопроводы (соединители, детали насоса, уплотнительные кольца, трубки), внешние кузовные детали для электроокраски (бамперы, корпуса зеркал, крышки топливных баков) Улучшенный баланс свойств по сравнению с техническим углеродом, способность к переработке для крупных частей, устойчивость к деформации
Электроника Технологические инструменты и оборудование, кассеты для полупроводниковых пластин, конвейерные ленты, объединительные блоки, оборудование для чистых комнат Повышенная чистота смесей по сравнению с углеродными волокнами, контроль удельного сопротивления поверхности, способность к обработке для отливки тонких частей, устойчивость к деформации, сбалансированность свойств, альтернативные возможности пластмассовых смесей по сравнению с углеродными волоконами

Углеродные нанотрубки не ограничены определёнными рамками по применению в различных отраслях промышленности. Материал изобретён относительно недавно, и, в связи с этим, в настоящее время широко применяется в научных разработках и исследованиях многих стран мира. Это необходимо для более детального изучения свойств и характеристик углеродных нанотрубок, а также налаживания масштабного производства материала, так как в настоящее время он занимает довольно слабые позиции на рынке.


Для охлаждения микропроцессоров применяют углеродные нанотрубки

Благодаря хорошим проводящим свойствам использование углеродных нанотрубок в машиностроении занимает широкий спектр. Этот материал используют в качестве устройств по охлаждению агрегатов, имеющих массивные размеры. В первую очередь это связано с тем, что углеродные нанотрубки имеют высокий удельный коэффициент теплопроводности.

Применение нанотрубок в разработках компьютерных технологий занимает важную роль в электронной промышленности. Благодаря применению этого материала налажено производство по изготовлению довольно плоских дисплеев. Это способствует выпуску компьютерной техники компактных размеров, но при этом не теряются, а даже увеличиваются технические характеристики электронно-вычислительных машин. Применение углеродных нанотрубок в разработках компьютерных технологий и электронной отрасли позволит достичь производства оборудования, которое в разы будет превосходить по техническим характеристикам нынешние аналоги. На основе данных исследований уже сейчас создаются высоковольтные кинескопы.


Первый процессор из углеродных нанотрубок

Проблемы использования

Одна из проблем применения нанотрубок заключается в негативном влиянии на живые организмы, что ставит под сомнение использование этого материала в медицине. Некоторые из экспертов предполагают, что в процессе массового производства углеродных нанотрубок могут возникнуть неоценённые риски. То есть в результате расширения областей применения нанотрубок возникнет потребность в их производстве в широких масштабах и, соответственно, возникнет угроза окружающей среде.

Учёные предлагают искать пути решения этой проблемы в применении более экологически чистых методов и способов производства углеродных нанотрубок. Также было предложено производителям этого материала серьёзно подойти к вопросу «очистки» последствия СVD-техпроцесса, что, в свою очередь, может сказаться на увеличении стоимости выпускаемой продукции.

Фото негативного воздействия нанотрубок на на клетки а) клетки кишечной палочки до воздействия нанотрубок; b) клетки после воздействия нанотрубок

В современном мире углеродные нанотрубки вносят весомый вклад в области развития инновационных технологий. Специалисты дают прогнозы по увеличению в ближайшие годы производства нанотрубок и к снижению цен на данную продукцию. Это, в свою очередь, расширит сферы применения нанотрубок и увеличит потребительский спрос на рынке.

ние в серной кислоте, содержащей хромовый ангидрид. Однако необходимо предварительное удаление крупной фракции гранул наноалмаза. Список литературы 1. Spitsyn B.V., Davidson J.L., Gradoboev M.N., Galushko T.B., Serebryakova N.V., Karpukhina T.A., Kulakova I.I., Melnik N.N. Inroad to modification of detonation nanodiamond // Diamond and Related Materials, 2006, Vol. 15, p. 296-299 2. Пат. 5-10695, Япония (А), Хромопокрывающий раствор, Tokyo Daiyamondo Kogu Seisakusho K.K., 27.04.1993 3. Долматов, В.Ю. Ультрадисперсные алмазы детонационного синтеза как основа нового класса композиционных металл-алмазных гальванических покрытий/ В.Ю.Долматов, Г.К.Буркат // Сверхтвердые материалы, 2000, Т. 1.- С. 84-94 4. Gregory R. Flocculation and sedimentation - the basic principles // Spec. Chem., 1991, Vol. 11, № 6, p. 426-430 УДК 661.66 Н.Ю. Бирюкова1, А. Н. Коваленко1, С.Ю. Царева1, Л.Д. Исхакова2, Е.В. Жариков1 Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия Научный центр волоконной оптики РАН, Москва, Россия 1 2 ОЧИСТКА УГЛЕРОДНЫХ НАНОТРУБОК, ПОЛУЧЕННЫХ МЕТОДОМ КАТАЛИТИЧЕСКОГО ПИРОЛИЗА БЕНЗОЛА In this work the results of experimental studies of purification and separation of multi-walled nanotubes by physical and chemical methods are presented. The efficiency of each stage has been controlled by studying of morphological characteristics of pyrolysis products. В работе представлены результаты экспериментальных исследований очистки и разделения многослойных углеродных нанотрубок физическими и химическими методами. Эффективность каждой стадии очистки контролировали по изменению морфологических характеристик продуктов пиролиза. Метод каталитического пиролиза углеводородов является одним из перспективных методов синтеза углеродных нанотрубок. Метод позволяет получать однослойные, многослойные нанотрубки, ориентированные массивы углеродных наноструктур при соответствующей организации параметров синтеза. Вместе с тем, продукт, полученный пиролизом углеродосодержащих соединений, наряду с нанотрубками содержит значительное количество примесей, таких как частицы катализатора, аморфный углерод, фуллерены и др. Для удаления этих примесей обычно используют физические методы (центрифугирование, ультразвуковое воздействие, фильтрация) в сочетании с химическими (окисление в газовых или жидких средах при повышенных температурах). В работе отрабатывалась комбинированная методика очистки и разделения многослойных нанотрубок от побочных продуктов, определялась эффективность различных реагентов. Исходный депозит был получен методом каталитического пиролиза бензола с использованием в качестве предкатализатора пентакарбонила железа. Депозит обрабатывался соляной, серной и азотной кислотами. Агрегаты нанотрубок разбивали ультразвуком с частотой 22 кГц. Для разделения депозита по фракциям использовали центрифугирование (3000 об/мин, продолжительность обработки – до 1 часа). Кроме кислотной, использовали также термическую обработку нанотрубок на У С П Е Х И в химии и химической технологии. Том XXI. 2007. №8 (76) 56 воздухе. Для достижения наилучшей очистки устанавливалась оптимальная последовательность различных методов. Морфологические характеристики продуктов пиролиза и степень очистки контролировали методами сканирующей электронной микроскопии, рамановской спектроскопии и рентгенофазового анализа. УДК 541.1 Е.Н. Голубина, Н.Ф. Кизим, В.В. Москаленко Новомосковский институт Российского химико-технологического университета им. Д.И. Менделеева, Новомосковск, Россия ВЛИЯНИЕ НАНОСТРУКТУР НА ОСОБЕННОСТИ ЭКСТРАКЦИИ В СИСТЕМЕ ВОДА – ErCl3 – Д2ЭГФК – ГЕПТАН КИНЕТИКИ The kinetic feature of extracted Er(III) the solution of D2EHPA in heptane (the concentrated area on kinetic curve, the high rate of its accumulation at dynamic interfacial layers in beginning of process, the extremal disposition in depending of reviewed thickness of dynamic interfacial layers from ratio concentration element and solvent) are indicate at significant part of nanostructures in process of extraction. Кинетические особенности извлечения эрбия (III) растворами Д2ЭГФК в гептане (концентрационные площадки на кинетических кривых, высокая скорость его накопления в ДМС в начале процесса, экстремальный характер зависимости наблюдаемой толщины ДМС от соотношения концентраций элемента и экстрагента) указывают на существенную роль наноструктур в процессе экстракции. Известно , что в экстракционных системах могут возникать различные нанообъекты: адсорбционные слои, мицеллы, мицеллярные гели, везикулы, полимерные гели, кристаллические гели, микроэмульсия, нанодисперсия, эмульсия. В частности, в системе La(OH)3-Д2ЭГФК-декан-вода образуется органогель, пространственная структура которого построена из палочкообразных частиц диаметром ≈0,2 и длиной 2-3 мкм . Натриевая соль Д2ЭГФК в отсутствии воды образует обратные цилиндрические мицеллы с радиусом 53 нм . В поперечном сечении мицеллы располагаются три молекулы NaД2ЭГФ, ориентированных полярными группами к центру и углеводородными цепями в сторону органического растворителя. Состояние такой решетки зависит от природы элемента . В случае Со(Д2ЭГФ)2 образуются макромолекулярные структуры со значением числа агрегации больше 225. В случае Ni(Д2ЭГФ)2 (возможно и Ni(Д2ЭГФ)2⋅2Н2О) возникают агрегаты с числом агрегации ≈5,2. При определенных условиях возможно образование полимерных молекулярных структур с гидродинамическим радиусом ≈15 нм. При экстракции лантана растворами Д2ЭГФК происходит образование объемного и структурно-жесткого алкилфосфата лантана, что обуславливает снижение эластичности монослоя алкилфосфата лантана на границе раздела фаз . Образование наноструктур оказывает влияние, как на равновесные свойства системы, так и на кинетику процесса. Экстракция РЗЭ осложнена протеканием многочисленных межфазных процессов, таких как возникновение и развитие спонтанной поверхностной конвекции (СПК), образование структурно-механического барьера, диспергирование фаз и т.п. В результате химической реакции между Д2ЭГФК и элементом образуется труднорастворимая соль, которая обуславливает образование наноструктур по механизму «от меньшего к большему» . Целью данной работы явилось установление влияния наноструктур на кинетические особенности экстракции эрбия(III) растворами Д2ЭГФК в гептане. У С П Е Х И в химии и химической технологии. Том XXI. 2007. №8 (76) 57

Ни один из распространенных способов получения УНТ не позволяет выделить их в чистом виде. Примесями к НТ могут быть фуллерены, аморфный углерод, графитизированные частицы, частицы катализатора.

Применяют три группы методов очистки УНТ:

1) разрушающие,

2) неразрушающие,

3) комбинированные.

Разрушающие методы используют химические реакции, которые могут быть окислительными или восстановительными и основаны на различиях в реакционной способности различных углеродных форм. Для окисления используют либо растворы окислителей, либо газообразные реагенты, для восстановления – водород. Методы позволяют выделять УНТ высокой чистоты, но связаны с потерями трубок.

Неразрушающие методы включают экстрагирование, флокуляцию и селективное осаждение, микрофильтрацию с перекрестным током, вытеснительную хроматографию, электрофорез, селективное взаимодействие с органическими полимерами. Как правило, эти методы малопроизводительны и неэффективны.

Вместе с тем, показано, что очистка ОУНТ, полученных лазерно-термическим методом, путем фильтрации с озвучиванием позволяет получить материал чистотой более 90% с выходом 30–70% (в зависимости от чистоты исходной сажи).

Экстрагирование применяется исключительно для удаления фуллеренов, при большом количестве которых их извлекают сероуглеродом или другими органическими растворителями.

Основную массу катализатора и носителя катализатора удаляют отмывкой в серной и азотной кислотах, а также их смеси. Если носителем катализатора служит силикагель, кварц или цеолиты, применяют фтористоводородную кислоту или растворы щелочей. Для удаления оксида алюминия применяют концентрированные растворы щелочей. Металлы-катализаторы, окклюдированные в полости УНТ или окруженные графитовой оболочкой, при этом не удаляются.

Аморфный углерод удаляют либо окислением, либо восстановлением. Для восстановления используют водород при температуре не ниже 700 о С, для окисления – воздух, кислород, озон, диоксид углерода или водные растворы окислителей. Окисление на воздухе начинает протекать при 450 о С. При этом часть УНТ (преимущественно наименьшего диаметра) окисляется полностью, что способствует раскрытию остальных трубок и удалению не удаленных при первичной кислотной обработке частиц катализаторов. Последние выводят вторичной отмывкой в кислоте. Для получения наиболее чистого продукта операции кислотной и газовой очистки могут повторяться несколько раз, сочетаться друг с другом и с физическими методами.



В некоторых случаях первичную кислотную очистку проводят в две стадии, с использованием сначала разбавленной кислоты (для удаления основной массы катализатора и носителя), а затем концентрированной (для удаления аморфного углерода и очистки поверхности УНТ) с промежуточными операциями фильтрации и промывки.

Поскольку частицы оксидов металлов катализируют окисление УНТ и вызывают снижение выхода очищенного продукта, используется дополнительная операция их пассивирования путем переведения во фториды действием SF 6 или других реагентов. Выход очищенных УНТ при этом повышается.

Для очистки материалов, получаемых дуговым и лазерно-термическим методом в университете Райса (США), было разработано несколько методов. «Старый» метод включал операции окисления 5 М HNO 3 (24 ч, 96 о С), нейтрализацию NaOH, диспергирование в 1%-ном водном растворе Тритона Х-100, фильтрацию с перекрестным током. К его недостаткам относится соосаждение гидроксидов Ni и Со вместе с УНТ, трудности удаления графитизированных частиц и органических солей Na, вспенивание при сушке в вакууме, низкая эффективность фильтрации, большая длительность процесса и низкий выход очищенных трубок.

«Новый» метод предусматривал окисление 5 М HNO 3 в течение 6 ч, центрифугирование, промывку и нейтрализацию осадка NaOH, повторное окисление HNO 3 с повторным центрифугированием и нейтрализацией, промывку метанолом, диспергирование в толуоле и отфильтровывание. Этот метод также не позволяет добиться полной очистки, хотя по выходу УНТ (50–90%) превосходит «старый» метод.

Использование органических растворителей непосредственно после кипячения в кислоте позволяет удалить 18–20% примесей, половина которых приходится на фуллерены, а другая – на растворимые углеводороды.

Полученные дуговым методом ОУНТ (5% катализатора, состоящего из Ni, Co и FeS с отношением 1:1:1) сначала окисляли на воздухе при 470 о С в течение 50 мин во вращающейся лабораторной печи, затем удаляли примеси металлов многократной промывкой 6 М HCl, добиваясь полного обесцвечивания раствора. Выход ОУНТ, содержащих менее 1 мас.% нелетучего остатка, составил 25–30%.



Разработан процесс очистки дуговых ОУНТ, включающий помимо окисления на воздухе и кипячения в HNO 3 , обработки раствором HCl и нейтрализации УЗ-диспергирование в диметилформамиде или N -метил-2-пирролидоне с последующим центрифугированием, испарением растворителя и вакуумным отжигом при 1100 о С.

Описана очистка пиролитических ОУНТ и МУНТ в две стадии: путем длительного (12 ч) озвучивания при 60 о С в растворе Н 2 О 2 для удаления углеродных примесей на первой стадии и озвучивания 6 ч в HCl для удаления примеси Ni на второй. После каждой стадии проводили центрифугирование и фильтрацию.

Для очистки ОУНТ, полученных методом HiPco и содержащих до 30 мас.% Fe, также описан двухстадийный метод, включающий окисление на воздухе (в частности, в микроволновой печи) и последующую отмывку концентрированной HCl.

Еще большее число стадий (диспергирование в горячей воде при озвучивании, взаимодействие с бромной водой при 90 о С в течение 3 ч, окисление на воздухе при 520 о С в течение 45 мин, обработка 5 М HCl при комнатной температуре) использовано для очистки МУНТ, полученных пиролизом раствора ферроцена в бензоле и содержащих до 32 мас.% Fe. После промывки и сушки при 150 о С в течение 12 ч содержание Fe снизилось до нескольких процентов, а выход составлял до 50%.

Окисление газами может привести к развитию пористости НТ и НВ, длительное кипячение в азотной кислоте – к полной деградации этих веществ.

При относительно большом количестве кремния (лазерно-термический способ) первичный продукт нагревают в концентрированной фтористоводородной кислоте, затем добавляют HNO 3 и ведут обработку при 35–40 о С еще 45 мин. Операции связаны с использованием сильно корродирующих сред и выделением ядовитых газов.

Для удаления цеолита, используемого при получении ОУНТ каталитическим пиролизом паров этанола, окисленный на воздухе продукт обрабатывают водным раствором NaOH (6 н) при кратковременном (5 мин) озвучивании, а собранный на фильтре остаток отмывают HCl (6 н).

Отделение ОУНТ от примесей других форм углерода и металлических частиц может быть проведено при ультразвуковом диспергировании трубок в растворе полиметилметакрилата в монохлорбензоле с последующей фильтрацией.

Для очистки ОУНТ часто рекомендуют использовать их функциализацию. Описан, в частности, метод, включающий три последовательных операции: функциализацию с использованием азометинилида в среде диметилформамида (см. разд. 4.5), медленное осаждение функциализованных ОУНТ при добавлении диэтилового эфира к раствору трубок в хлороформе, удаление функциональных групп и регенерация ОУНТ нагреванием при 350 о С и отжигом при 900 о С. На первой стадии происходит удаление металлических частиц, на второй – аморфного углерода. Содержание Fe в трубках HiPco, очищенных таким методом, снижается до 0,4 мас.%.

Взаимодействие с ДНК может использоваться для разделения металлических ОУНТ от полупроводниковых. В лабораториях имеется широкий набор разнообразных однониточных ДНК, выбирая которые удается добиться селективного обволакивания и последующего разделения исходной смеси на фракции хроматографическим методом.

К физическим методам относится переведение исходной смеси в водный раствор с помощью длительной ультразвуковой обработки в присутствии поверхностно-активных веществ или обволакивающих растворимых полимеров, микрофильтрация, центрифугирование, высокоэффективная жидкостная хроматография, гель-проникающая хроматография. Получение дисперсий, пригодных для хроматографии, использовали прививку цвиттер-ионов (см. разд. 4.5).

Предполагается, что развитие хроматографических методов позволит разделять УНТ не только по длине и диаметру, но и по хиральности, отделять трубки с металлическими свойствами от трубок с полупроводниковым типом проводимости. Для разделения ОУНТ с различными электронными свойствами испытано селективное осаждение металлических трубок в растворе октадециламина в тетрагидрофуране (амин прочнее адсорбируется на полупроводниковых трубках и оставляет их в растворе).

Примером использования неразрушающих методов очистки и разделения УНТ по размерам служит также способ, разработанный учеными из Швейцарии и США. Исходный материал, полученный дуговым методом, с помощью додецилсульфата натрия переводили в водный коллоидный раствор (концентрация ПАВ была слегка выше критической концентрации мицеллообразования). При повышении концентрации ПАВ получали агрегаты УНТ, которые отфильтровывали при интенсивном озвучивании через трековые мембраны с порами 0,4 мкм. После повторного диспергирования в воде операцию повторяли несколько раз, добиваясь желательной степени очистки УНТ.

Метод капиллярного электрофореза малопроизводителен, хотя позволяет не только очищать УНТ, но и разделять их по длине или диаметру. При разделении используют дисперсии, стабилизированные ПАВ или растворимыми полимерами. Об очистке и разделении УНТ методом диэлектрофореза см. в разд. 4.13.

Разработан неразрушающий метод разделения очищенных и укороченных УНТ по фракциям с отличающимися по размеру трубками в перекрестных (асимметричных) потоках жидкости.

Для укрупнения частиц металлов-катализаторов проводят отжиг в водороде при 1200 о С, после чего растворяют металлы в кислоте. Полное удаление металлов-катализаторов и носителей катализаторов вне зависимости от формы их нахождения в смеси может быть проведено высокотемпературным (1500–1800 о С) вакуумным отжигом. При этом удаляются и фуллерены, УНТ увеличиваются в диаметре и становятся менее дефектными. Для полного отжига дефектов требуются температуры выше 2500 о С. Вакуумный отжиг при 2000 о С использован для повышения устойчивости МУНТ к кислотной обработке.

Для очистки от примесей углеродных волокон, образующихся при пиролизе углеводородов, рекомендовано замораживание жидким азотом.

Выбор того или иного варианта очистки зависит от состава очищаемой смеси, структуры и морфологии НТ, количества примесей и от требований к конечному продукту. В пиролитических УНТ и особенно УНВ содержится меньше аморфного углерода или вовсе его нет.

При оценке чистоты УНТ наибольшую трудность представляет определение содержания примеси аморфного углерода. Раман-спектроскопия (см. гл. 8) дает лишь качественную картину. Более надежным, но в то же время и трудоемким методом является спектроскопия в ближней ИК-области (Иткис, 2003).

В США создан стандарт чистоты ОУНТ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Нанотехнология - наука об изготовлении и свойствах элементов техники на атомном и молекулярном уровне - у всех сейчас "на слуху". Наноприборы и наномашины из таких элементов из области фантазий уже переходят в современную жизнь. И частью этой науки является быстро растущая ветвь нанотрубных и фуллеренных исследований, привлекших сотни исследовательских групп физиков, химиков и материаловедов.

Проблема создания наноструктур с заданными свойствами и контролируемыми размерами входит в число важнейших проблем XXI века. Ее решение революционизирует электронику, материаловедение, механику, химию, медицину и биологию.

Углеродные нанотрубы (УНТ) являются уникальными макромолекулярными системами. Их весьма малый нанометровый диаметр и большая микронная длина указывают на то, что они наиболее близки по своей структуре к идеальным одномерным (ID) системам. Поэтому УНТ - идеальные объекты для проверки теории квантовых явлений, в частности, квантового транспорта в низкоразмерных твердотельных системах. Они химически и термически стабильны по крайней мере до 2000 К, обладают превосходной теплопроводностью, уникальными прочностными и механическими характеристиками.

Простота структуры нанотруб позволяет развивать теоретические модели структур из них. Поэтому новые неожиданные применения ждут УНТ в будущем, особенно этo касается применений в биологии (манипулирование молекулами внутри клетки, искусственные нейронные сети, наномеханическая память и др.).

1. Однослойные нанотрубы

1.1 Открытие

В начале 1993 г. несколько групп ученых заявили, что в углеродные наночастицы или нанотрубы могут быть помещены чужеродные материалы при использовании модифицированных электродов в процессе дугового испарения. Группа Родни Руоффа из Калифорнии и группа Яхачи Саито из Японии получили закапсулированные кристаллы LaC 2 при работе с электродами, нашпигованными лантаном, тогда как Суппапан Серафин с коллегами доложили о том, что YC2 может быть внедрен в нанотрубы при использовании электродов, содержащих иттрий. Эта работа открыла целую новую область, основанную на наночастицах и нанотрубах как "молекулярных контейнерах", но она же косвенно привела к совершенно иному открытию с равнозначно важными приложениями.

Дональд Бетюн и его коллеги из калифорнийского IBM Альмаден исследовательского центра в Сан Луисе очень заинтересовались статьями Руоффа и других. Эта группа работала над магнитными материалами в их приложениях к запоминанию информации и полагала, что капсулированные в углеродные оболочки кристаллиты ферромагнитного переходного металла могут быть весьма ценны в этой области. В таких материалах закапсулированные металлические частицы должны сохранять свои магнитные моменты и одновременно быть химически и магнитно- изолированными от своих соседей. Несколько лет эта IBM группа работала над "эшюэдральными фуллеренами"; фуллеренами, содержащими внутри малое число атомов металла. Но большие кластеры или кристаллы внутри фуллереноподобных ячеек могли представить наибольший практический интерес. Поэтому Бетюн решил попытаться провести некоторые эксперименты по дуговому испарению, используя электроды, пропитанные ферромагнитными переходными металлами железа, кобальта и никеля. Однако результат этого эксперимента получился вовсе не тот, который ожидался. Прежде всего, полученная при дуговом испарении сажа не была похожа на обычный материал, производимый при дуговом испарении чистого графита. Слои сажи свешивались подобно паутине со стенок камеры, тогда как сам осажденный на стенках материал имел текстуру резины и мог быть счищен полосками. Когда Бетюн и его коллега Роберт Бейерс проверили этот странный новый материал, используя электронную микроскопию высокого разрешения, они были изумлены, обнаружив, что он содержал множество нанотруб со стенками в один атомарный слой. Эти прекрасные трубы были перепутаны с аморфной сажей и частицами металла или металлического карбида, поддерживающими этот материал в таком виде, что соответствовало его странной текстуре. Эта работа была принята к печати в Nature и появилась в июне 1993 г. Микроснимки из этой статьи показаны на рисунке 1.1.

Рисунок 1.1 - Снимки из работы Бетюна и др., показывающие однослойные углеродные нанотрубы, полученные при совместном испарении графита и кобальта. Трубы имеют диаметры около 1,2 нм.

Независимо от американской группы Сумио Ииджима и Тошинари Ичихаши из NEC лабораторий в Японии также экспериментировали с дуговым испарением, используя модифицированные электроды. Кроме того, они интересовались влиянием изменения атмосферы внутри камеры дугового испарения. Подобно Бетюну и его коллегам, они открыли, что при определенных условиях получается совсем иной тип сажи, отличной от той, которая обычно образуется при дуговом испарении. Для этого исследования японские ученые внедрили в свои электроды железо и в качестве атмосферы использовали смесь метана и аргона вместо гелия. При проверке электронной микроскопией высокого разрешения было обнаружено, что материал такого дугового испарения содержал весьма - замечательные нанотрубы, тянущиеся подобно ниткам между кластерами аморфного материала или частиц металла. Однослойные нанотрубы отличаются от тех, что получаются в непрерывном дуговом испарении, очень узким распределением по диаметрам. В случае "обычных" труб внутренний диаметр имеет диапазон от 1,5 до 15 нм, а внешний - от 2,5 до 30 нм. С другой стороны, однослойные нанотрубы все имеют очень близкие диаметры. В материале Бетюна и его коллег нанотрубы имели диаметры 1,2 (± 0,1) нм, тогда как Ииджимаи Ичихаши нашли, что диаметры труб располагаются от 0,7 до 1,6 нм с серединой примерно на 1,05 нм. Подобно трубам, получаемым при обычном дуговом испарении, все однослойные нанотрубы были закрыты шапками, и не имелось никакого доказательства присутствия частиц металлического катализатора на концах этих труб. Тем не менее полагают, что рост однослойных нанотруб существенно каталитический.

1.2 Последующая работа по однослойным нанотрубам

Следуя первоначальному фундаментальному исследованию, Дональд Бетюн и его коллеги из IBM в Сан Хосе в содружестве с учеными из Калифорнийского Технологического института, Политехнического института и Государственного Университета Вирджинии провели серию исследований по приготовлению однослойных нанотруб, используя массу "катализаторов". В одной из первых серий они показали, что добавление серы и кобальта в анод (или в виде чистой S, или CoS) приводило к появлению нанотруб с более широким диапазоном диаметров, чем при получении с одним кобальтом. Так, однослойные нанотрубы с диметрами от 1 до 6 нм получались тогда, когда в катоде обнаруживалась сера, по сравнению с 1-2 нм в случае чистого кобальта. Впоследствии было показано, что висмут и свинец могли аналогично содействовать образованию труб большого диаметра.

В 1997 г. французская группа показала, что и при дуговом испарении можно добиться высокого выхода нанотруб. Их метод был похож на оригинальную технику Бетюна и его коллег, но они использовали несколько иную геометрию реактора. Также в качестве катализатора использовалась смесь никель/иттрий, а не предпочитаемый группой Бетюна кобальт. Было обнаружено, что наибольшее количество нанотруб формировалось в "воротнике" вокруг катодного депозита, который составлял примерно 20% общей массы испаренного материала. Полностью выход труб оценивался в 70-90%. Исследование материала "воротника" электронной микроскопией высокого разрешения показало присутствие многих пучков из труб с диметром около 1,4 нм. Такой выход и вид получаемых труб подобны "жгутным" образцам группы Смолли, использующей лазерное испарение.

В конце 1993 г. Шекхар Субрамони из Дюпона в Вилмингтоне, Делавер, в сотрудничестве с исследователями из SPI International описали получение однослойных нанотруб другим способом. Эти ученые применяли дуговое испарение, используя электроды с гадолиниевымым заполнением, и собирали сажу со стенок реактора. Вместе с большими количествами аморфного углерода сажа содержала структуры типа "морского ежа", которые содержали однослойные нанотрубы, вырастающие на относительно больших частицах карбида гадолиния (с типичными размерами в десятки нанометров). Такие трубы были короче тех, что получались с металлами группы железа, но имели тот же диапазон диаметров. Последующее исследование показало, что радиальные однослойные нанотрубы могли формироваться и на множестве других металлов, включая лантан и иттрий. Рисунок 1.2, взятый из работы Саито с коллегами, показывает типичное изображение однослойных нанотруб, растущих радиально из частицы, содержащей лантан. В отличие от металлов группы железа редкоземельные элементы не известны как катализаторы для получения многослойных нанотруб, поэтому довольно удивительно формирование на них труб. Факт роста труб на относительно больших частицах предполагает, что такой механизм роста иной. Было предположено, что рост труб на поверхностях частиц может включать выделение пересыщенных углеродных атомов из внутренности карбидовых частиц. Отметим, что радиальный рост многослойных труб из каталитических частиц наблюдался много лет тому назад Бейкером и другими.

Обсуждаемые пока что методы получения однослойных нанотруб включали дуговое испарение с использованием модифицированных электродов. Работа Смолли и его коллег показала, что однослойные нанотрубы могут также синтезироваться при помощи чисто каталитического метода. Катализатор, используемый частицы молибдена нескольких нанометров в диаметре, располагался на алюминии. Это все помещалось во внутрь трубообразной печи, через которую пропускался монооксид углерода при температуре 1200 °С. Эта температура гораздо выше обычно используемой при каталитическом получении нанотруб, что может объяснить, почему скорее образуются однослойные, чем многослойные нанотрубы.

Каталитически приготовленные однослойные трубы имели ряд интересных особенностей, которые отличали их от труб, синтезированных дуговым испарением. Во-первых, каталитические трубы обычно имели малые металлические частицы, прикрепленные к концу, так же, как и многослойные трубы, получаемые при катализе. Имелся также широкий диапазон диаметров частиц (примерно 1-5 нм), и казалось, что диаметр каждой трубы определялся диаметром соответствующей частицы катализатора. И наконец, каталитически сформированные однослойные трубы обычно были скорее изолированными, чем собранными в пучки, как это бывает в случае с трубами, синтезированными при дуговом испарении.

Эти наблюдения дали возможность Смолли с коллегами предложить механизм роста для каталитически формируемых труб, который включает начальное формирование однослоевой шапки (названную ими ярмолка - иудейским именем тюбетейки), последующим ростом этой шапки с отрывом от каталитических частиц, впоследствии покидающих трубу. Этот механизм совершенно отличен от предложенного ими для роста однослойных труб при лазерном испарении.

Рисунок 1.2 - Однослойные нанотрубы, растущие на лантановой частице

Рисунок 1.3 - ТЭМ изображения образцов из "жгутов" однослойных нанотруб (а)

Изображение низкого разрешения, показывающее большое число жгутов, (б) микрография высокого разрешения индивидуального жгута, показанного вдоль его оси.

1.3 Нанотрубные "жгуты"

С открытия в 1985 г. в Раисе С60 группа Смолли сконцентрировалась на использовании лазеров в синтезе фуллереноподобных материалов. В 1995 г. они доложили о развитии технологии лазерного синтеза, которая позволила им получить однослойные нанотрубы с высоким выходом. Последующие улучшения этого метода привели к производству однослойных нанотруб с необычно однородными диаметрами. Наилучший выход однородных однослойных нанотруб был получен при каталитической смеси, составленной из равных частей Со и Ni, и был использован двойной импульс, чтобы обеспечить более ровное испарение такой мишени.

Несколько микрографий материала, полученного такой технологией, показаны на рисунке 1.3. По общему внешнему виду он очень похож на материал, получаемый дуговым испарением. Однако отдельные трубы имеют тенденцию образовывать "жгуты" или протяженные пучки, которые состоят из индивидуальных труб одного и того же диаметра. Иногда можно было обнаружить жгуты, проходившие на близком расстоянии от направления электронного пучка, так что можно было видеть их "в торец", как на рисунок 1.3(б). В дополнение к электронной микроскопии Смолли с коллегами провели рентгеновские диффракционные измерения на "жгутных" образцах в сотрудничестве с Джоном Фишером и его соавторами из Пенсильванского Государственного Университета. Были получены хорошо определяемые отражения от двумерной решетки, подтверждающие то, что трубы имели одинаковые диаметры. Было найдено хорошее согласие с экспериментальными данными в предположении, что диаметр нанотруб равен 1,38 нм с ошибкой ± 0,02 нм. Было обнаружено, что Ван-дер-ваальсова щель между трубами равна 0,315 нм, подобной в кристаллическом С 60 . Из РД исследований был сделан вывод, что эти жгуты состоят преимущественно из (10,10) кресельных нанотруб. Это со всей очевидностью было подтверждено измерениями электронной нанодиффракции электронного пучка, так что можно было видеть их "в торец", как на рисунок 1.3(б).

2. Теории роста нанотруб

2.1 Общие замечания

Вначале важно рассмотреть влияние на рост структуры трубы. В своей статье в Nature 1991 г. Ииджима указывал на то, что геликоидальная структура, кажется, должна быть более предпочтительной, так как такие трубы имеют на растущем конце повторяющийся шаг. Это предположение, иллюстрированное на рисунке 2., очень похоже на появление винтовой дислокации на поверхности кристалла. Кресельные и зигзагные нанотрубы не обладают такой структурой, предпочтительной для роста, и должны требовать повторного зарождения нового кольца гексагонов. Это предполагает то, что спиральные нанотрубы должны быть более часто наблюдаемы, чем кресельные или зигзагные, хотя в настоящее время экспериментального свидетельства недостаточно, чтобы подтвердить это.

Рисунок 2. - Рисунок двух концентрических спиральных труб, показывающий присутствие ступенек на растущих концах (5)

Далее, существует очень важный вопрос для механизма роста - имеют ли растущие трубы закрытые или открытые концы? Ранняя модель нанотрубного роста, предложенная впервые, Эндо и Крото, предпочитала механизм с закрытым концом. Они предполагали, что атомы углерода могут быть вставлены в закрытую фуллеренную поверхность на места в окрестности пентагональных колец, с последующим переходом в равновесное состояние, в результате которого произойдет непрерывное вытягивание первоначального фуллерена. В поддержку этой идеи Эндо и Крото цитировали демонстрацию Ульмера с коллегами того, что С 60 и С 70 могут явно перерастать в большие фуллерены при добавлении малых углеродных фрагментов.

В то время как механизм, Эндо-Крото обеспечивает правдоподобное объяснение роста однослойных нанотруб, он остается серьезной проблемой для объяснения многослойного роста. При своем рассмотрении модели Эндо и Крото предполагают, что многослойный рост может осуществляться "эпитаксиально". Если это так, то, кажется, нет очевидной причины, почему бы второму слою не начать расти сразу же после того, как сформируется первоначальный фуллерен, а как только второй слой станет закрытым, всякое дальнейшее вытягивание внутренней трубы должно становиться невозможным. Но это находится не в ладах с тем наблюдением, что большинство труб многослойны по всей ее длине. Такая модель имеет также трудности в объяснении структур сомножественными отделениями. По этим причинам, Эндо-Крото механизм роста с закрытым окончанием не был широко принят.

Тот вывод, что механизм роста должен происходить с открытым окончанием трубы, в некотором роде более предпочтителен. Как сказал Ричард Смолли, "если мы и узнали с 1984-1985 годов что-нибудь о том, как конденсируется углерод, это то, что открытые листы должны охотно соединять пентагоны, чтобы исключать болтающиеся связи". Проблема труб, остающихся с открытым концом при условиях, благоприятных для ее закрытия, одна из тех, проблем которые рассматривал целый ряд авторов.

2.2 Почему нанотрубы остаются открытыми во время роста

Некоторые авторы, особенно Смолли с коллегами, предполагали, что электрическое поле в дуге может играть важную роль в сохранении труб открытыми во время роста. Если правильнее, это должно было помочь понять, почему нанотрубы никогда не находят в саже, конденсированной на стенках камеры дугового испарения. Однако вычисления показали, что вызванного полем понижения энергии открытого конца недостаточно для стабиллизации открытой конфигурации, за исключением нереально высоких полей. Поэтому была развита изящная модель, в которой атом "точечно приваривается" между слоями, помогая стабилизации образования открытого конца, а не его закрыванию.

Подтверждением этой идеи послужили эксперименты по закрыванию отдельных многослойных нанотруб при приложении разницы напряжения и без нее. Такая модель может помочь пониманию роста нанотруб в дуге, но не может подойти к случаю роста труб, где не присутствуют сильные электрические поля. Это привело некоторых авторов к предположению, что одни взаимодействия между объединенными концентрическими трубами могут быть существенны для стабилизации открытых труб.

Детальный анализ взаимодействия двух объединенных труб был выполнен Жан-Кристофом Чарлиером с коллегами методами молекулярной динамики. Они рассмотрели (10,0) трубу внутри (18,0) трубы и нашли, что между концами двух труб формируются мостиковые связи. Было обнаружено, что при высоких температурах (3000 К) конфигурация слипающихся связывающихся структур непрерывно флуктуирует. Предполагалось, что флуктуирующая структура должна создавать активные места для адсорбции и внедрения новых углеродных атомов, способствуя, таким образом, росту трубы.

Проблема такой теории заключается в том, что она не может объяснить рост одностенных труб большого диаметра при тепловом воздействии на фуллеренную сажу. Вообще в настоящее время полного объяснения роста открытых нанотруб, кажется, не существует.

2.3 Свойства дуговой плазмы

Большинство моделей роста нанотруб, обсуждаемых ранее, предполагают, что трубы зарождаются и растут в плазме дуги. Однако некоторые авторы рассматривали физическое состояние самой плазмы и ее роль в формировании нанотруб. Наиболее детальное обсуждение этой проблемы было проведено Евгением Гамалеем, экспертом по физике плазмы, и Томасом Эббесеном (30, 31). Это комплексная проблема, и здесь возможно только краткое резюме.

Гамалей и Эббесен начинают с предположения, что нанотрубы и наночастииы образуются в области дуги вблизи катодной поверхности. Поэтому они анализируют плотность и скорость углеродных паров в этом районе, принимая во внимание температуру и свойства самой дуги для того, чтобы разработать их модель. Они полагают, что в слое углеродного пара около катодной поверхности будут существовать две группы углеродных частиц с различными распределениями скоростей. Эта идея является центральной в их модели роста. Одна группа углеродных частиц должна иметь максвелловское, т.е. изотропное распределение по скоростям, соответствующее температуре дуги (~ 4000 К). Другая группа состоит из ионов, ускоряющихся в щели между положительным пространственным зарядом и катодом. Скорость этих углеродных частиц должна быть больше скорости тепловых частиц, и в этом случае поток должен быть скорее направленным, чем изотропным. Процесс формирования нанотруб (и наночастиц) рассматривается как осуществление серии циклов, каждый из которых состоит из следующих шагов:

1.Формирование зародыша. В начале разрядного процесса распределение по скоростям углерода в испаренном слое преимущественно максвелловское, и это приводит к формированию структур без какой-либо оси симметрии, таких, как наночастицы. Когда ток становится более направленным, начинают формироваться открытые структуры, которые Гамалей и Эббесен рассматривают как зародыши для нанотрубного роста.

2.Рост труб во время стабильного разряда. Когда разряд стабилизируется, поток углеродных ионов проникает в паровой слой в направлении, перпендикулярном к поверхности катода. Эти частицы углерода будут давать вклад в удлинение однослойных и многослойных нанотруб. Так как взаимодействие направленных частиц углерода с твердой поверхностью должно быть более интенсивным, чем частиц углерода парового слоя, рост протяженных структур должен быть преимущественным над формированием изотропных структур. Однако конденсация на катодной поверхности углерода из парового слоя будет давать вклад в утолщение нанотруб.

3.Окончание роста и закрывание. Гамалей и Эббесен отмечают, что нанотрубы часто видят выросшими в виде пучков и что в наблюдаемом пучке для всех труб рост и его окончание происходят примерно в одно и то же время. Это позволяет им предположить, что в дуговом разряде происходят нестабильности, которые могут привести к внезапному окончанию роста нанотруб. Такие нестабильности могут происходить от неустойчивого движения катодного пятна по катодной поверхности или от спонтанного прерывания и поджога дуги. При таких обстоятельствах частицы углерода с максвелловским распределением скоростей будут снова преобладать, а конденсация такого углерода будет приводить в конечном счете к закрыванию трубы шапкой и окончанию роста.

2.4 Альтернативные модели

Ученые представили совершенно другую теорию нанотрубного роста при дуговом испарении. В этой модели нанотрубы и наночастицы не растут в плазме дуги, а скорее образуются на катоде как результат трансформации твердотельного состояния. Таким образом, рост нанотруб не есть следствие действия электрического поля, а просто является результатом очень быстрого нагрева до высоких температур, испытываемого материалом, осажденным на катод во время действия дуги. Эта идея была инициирована наблюдением того, что нанотрубы могут быть приготовлены высокотемпературным тепловым воздействием на фуллеренную сажу и предусматривает двустадийный процесс роста нантруб, в котором фуллеренная сажа является промежуточным продуктом. Модель можно обобщить следующим образом. На начальных этапах дугового испарения фуллеренообразный материал (плюс фуллерены) должен конденсироваться на катоде, а затем конденсированный материал должен подвергнуться высоким температурам во время продолжения дугового процесса, приводя к формированию вначале однослойных, нанотрубноподобных структур, а затем многослойных нанотруб. В этой двустадийной модели ключевым действием является отжиг фуллереновой сажи. Таким образом, осаждаемая на стенках реактора сажа, которая испытывает относительно слабый отжиг, не трансформируется в трубы. С другой стороны, сажа, которая конденсируется на катоде, должна как раз испытывать значительное отжигание: оно приведет к образованию труб и наночастиц в виде твердой массы. Поэтому такая модель дает нам возможность объяснить влияние на производство нанотруб таких переменных величин, как охлаждение электродов и давление гелия. Кажется, что водяное охлаждение должно быть существенным для поддержания температуры катода низкой до уровня, необходимого для исключения шлакования труб. Аналогично роль гелия можно объяснить в терминах его влияния на температуру катодного депозита. Так как гелий - замечательный проводник тепла, высокие давления должны приводить к уменьшению температуры электрода, приводя к ее падению в области, где нанотрубный рост может происходить без шлакования.

2.5 Рост однослойных нанотруб

Сначала рассмотрим рост однослойных нанотруб в дуговом испарителе. Этот процесс поднимает не менее вопросов, чем рост многослойных нанотруб в дуге. Среди большинства очевидных следующие: Почему наблюдаются только однослойные нанотрубы? Почему имеется такое узкое распределение диаметров труб? Какова роль металла? Почему трубы растут чаще всего в виде пучков? И снова мы имеем только несколько определенных ответов на эти вопросы.

Одно, что кажется ясным, это то, что рост однослойных нанотруб должен существенно определяться скорее кинетикой, чем термодинамикой, так как ожидается, что трубы с очень малым диаметром менее стабильны, чем с большим. Отсутствие многих слоев предположительно также сдерживается кинитическими факторами. Что касается роли металла, то и Бетюн с коллегами, и Ииджима с Ичихаши предполагали, что отдельные атомы металла или их малые кластеры могут действовать как катализаторы роста в паровой фазе по аналогии с тем путем, при котором малые металлические частицы катализируют рост многослойных труб. Участие индивидуальных атомов или хорошо определенных кластеров должно помочь объяснить узкоразмерные распределения. Однако удивительно, что каталитические частицы, по-видимому, никогда не наблюдаются на верхушках однослойных нанотруб. Даже если каталитические частицы были бы отдельными атомами, то их можно было бы детектировать электронной микроскопией высокого разрешения или сканирующей трансмиссионной электронной микроскопией (СТЭМ). Возможно, каталитические атомы или частицы станут открепляться в процессе закрытия труб. Как было замечено выше, Бетюн с коллегами показали, что добавление к металлу таких элементов, как сера, может сильно нарушить распределение трубных диаметров. Дальнейшее исследование этого явления может дать полезные разъяснения механизма роста.

Одна из нескольких попыток развить детальную модель роста однослойных нанотруб была предпринята Чинг-Хва Киангом и Вильямом Годдардом. Эти исследователи предполагают, что пленарные полиэновые кольца могут служить зародышами образования однослойных нанотруб. Было показано, что такие кольцевые структуры должны быть доминантными частицами в углеродных парах тогда как закрытые каркасные структуры доминируют при больших размерах. Было постулировано, что углеродные кольца могут быть предшественниками в формировании фуллеренов, хотя это остается спорным. Кианг и Годдард полагают, что начальными материалами формирования однослойных нанотруб являются моноциклические углеродные кольца и газофазные кластеры карбида кобальта, возможно, заряженные. Кластеры карбида кобальта действуют как катализаторы при присоединении к кольцам С 2 или других частиц. Эти авторы предполагают, что специфическая конформация должна влиять на структуру возникающей нанотрубы.

Смолли с коллегами, следуя их ситнезу нанотрубных "жгутов", предположили механизм роста, который имеет некоторые сходства с Кианг и Годдард механизмом. Эта модель основана на том предположении, что все трубы имеют одинаковую (10,10) кресельную структуру. Эта структура единственно в своем роде позволяет раскрытым гексагональным кольцам быть "перекрытыми" тройными связями, хотя они должны быть значителъно напряженными по сравнению с их первоначальным линейным расположением. Затем группа Смолли предполагает, что отдельный атом никеля станет химически адсорбироваться на окончание трубы и "бегать" по периферии (рисунок 2.1), помогая расположиться приходящим атомам углерода на гексагональных кольцах. Любые локально неоптимальные структуры, включая пентагоны, будут отражены, так что такая труба будет продолжать расти неопределенное время.

Здесь так же, как и для других механизмов, предложенных для роста однослойных нанотруб, не имеется какого-либо прямого экспериментального доказательства.

Рисунок 2.1 - Иллюстрация "самокатного" механизма при росте (10,10) кресельных нанотруб.

Ряд групп ученых в мире пытались очищать нанотрубные образцы, используя такие методы, как центрифугирование, фильтрация и хроматография. Некоторые из этих методов включают первоначальное приготовление коллоидных суспензий содержащего нанотрубы материала, используя поверхностно-активные агенты. Например, Жан-Марк Бонард с коллегами применял анионный сурфактант додекациклосульфат натрия (СДН), чтобы добиться стабильной суспензии нанотруб и наночастиц в воде. Вначале использовался фильтрационный метод для отделения нанотруб от наночастиц, но более успешное разделение было достигнуто просто: позволяя нанотрубам выпадать в виде хлопьев, оставляя наночастицы в суспензии. Осадок можно, было потом извлечь и продолжить дальнейшие процедуры осаждения. Это не только позволяло извлечь наночастицы, но также приводило к некоторому разделению труб по длинам.

Другой метод достижения разделения нанотруб по размеру описан Дуисбергом с коллегами из Макс - Планк Института в Штуттгарте и Тринити Колледжа Дублина. Разделение труб и другого материала снова получали в кислоте СДН. Потом сепарация проводилась с применением хроматографии размерного исключения (ХРИ). Эта технология широко использовалась для разделения биологических макромолекул, и авторы продемонстрировали то, что можно успешно разделять нанотрубные образцы на фракции с трубами различных длин. Одним возможным недостатком использования суфрактантов, таких как СДН, в очистке нанотруб является то, что следы суфрактанта могут остаться в конечном продукте. Однако Бонард с коллегами показали, что можно добиться уменьшения уровня СДН ниже 0,1% промыванием.

3. Очистка Однослойных Труб

Методы для очистки однослойных труб были также развиты, хотя этот процесс требует больших усилий, чем для многослойных нанотруб. В дополнение к большому количеству аморфного углерода сажа, содержащая нанотрубы, содержит и металлические частицы, которые сами часто бывают, покрыты углеродом. Более - того, методы жесткого окисления, используемые для очистки многослойных нанотруб, также являются деструктивными и для однослойных труб.

Японские ученые шаг за шагом описали процесс последовательного исключения различных примесей. Первый шаг включал промывку необработанной сажи дистиллированной водой в течение 12 ч. с последующей фильтрацией и просушкой. Эта процедура позволяла удалять некоторое количество графитовых частиц и аморфного углерода. Фуллерены вымывались толуолом в аппарате Соксклета. Затем сажа нагревалась до 470 ?С на воздухе в течение 20 минут с целью избавиться от металлических частиц. Наконец, оставшаяся сажа подвергалась воздействию хлорной кислоты для того, чтобы растворить металлические частицы. Проверка окончательного продукта электронной микроскопией и рентгеновской дифракцией показала, что большая часть загрязнений была удалена, хотя некоторые заполненные и пустые наночастицы оставались в нем.

Смолли с коллегами развили метод очистки нанотрубных образцов из жгутов, используя микрофильтрацию. Они первыми описали технику использования катионного сурфактанта для приготовления суспензии из нанотруб и сопровождающего материала в растворе, а затем высаживания нанотруб на мембрану. Однако требовалась многократная фильтрация с приготовлением суспензии после каждой фильтрации для того, чтобы достигнуть значительного уровня очистки, что делает такую процедуру очень медленной и неэффективной. Улучшенный метод был описан в работе, где использовали обработку ультразвуком, сохраняя материал в суспензии во время фильтрации и, таким образом, делая возможным непрерывный процесс фильтрации большого количества образца. Таким путем можно было очищать до 150 млг сажи в течение 3-6 ч. с получением материала, содержащего более 90% ОСНТ.

Однослойные трубы могли очищаться также при использовании хромототографии, Дуйсбург и др. описали метод, подобный тому, который использовали для МСНТ, и показали его эффективность для ОСНТ.

4. Выравнивание Нанотрубных Образцов

углеродный нанотруба фуллереноподобный плазма

Многие описанные выше методы приготовления дают образцы со случайно ориентированными, нанотрубами. Хотя трубы часто группируются в пучки, сами эти пучки вообще не выравниваются один относительно другого. Для измерений свойств нанотруб было бы весьма полезным иметь образцы, в которых все трубы выровнены в одном направлении. Хотя уже описывались каталитические методы приготовления выровненных труб, но необходимо было также разрабатывать технологии выравнивания образцов труб после их синтеза. Так, один из первых таких методов был предложен в 1995 г. группой из Эколь Политехник Федерале Лозанны в Швейцарии. Они использовали МСНТ образец, приготовленный дуговым испарением, который был очищен центрифугированием и фильтрацией от наночастиц и другого загрязняющего материала. Затем на поверхность пластика были осаждены тонкие пленки очищенных нанотруб, и СЭМ изображения показали, что эти трубы выравнивались перпендикулярно к пленке в таком свободно осаждаемом состоянии. Было обнаружено, что трубы могли выравниваться параллельно к поверхности образца, предварительно легко натертой тефлоном или алюминиевой фольгой. Авторы утверждают, что этим методом можно сделать пленки "произвольно большими", и они использовали эти пленки для выполнения экспериментов по полевой эмиссии.

Другой метод выравнивания нанотруб заключается во внедрении этих труб в матрицу и последующего выдавливания такой матрицы каким-либо путем так, чтобы трубы становились выровненными в направлении потока.

5. Контроль Длины Углеродных Нанотруб

Техника нарезания отдельных однослойных нанотруб на контролируемые длины описана исследователями из Дельфтского и Раис Университетов в конце 1997 г. Используемые нанотрубы были получены методом лазерного испарения группой Смолли и были осаждены на поверхности монокристаллов золота для исследования с помощью сканирующей туннельной микроскопии. Когда идентифицировалась подходящая нанотруба, сканирование останавливалось и Pt/Ir игла продвигалась до выбранной точки на этой трубе. Тогда обратная связь выключалась, и между острием и образцом на определенный период подавался импульс напряжения. Когда сканирование возобновлялось, на нанотрубе был виден обрыв, если обрезание произошло успешно. Было продемонстрировано, что индивидуальные трубы можно нарезать вплоть до четырех отдельных позиций. Было обнаружено, что критическим фактором в процессе нарезки является скорее напряжение, чем ток, необходимый для процесса нарезки минимум напряжения должен быть 4 В.

Имея нарезанные на короткие длины индивидуальные нанотрубы, авторы смогли показать, что электрические свойства коротких труб отличались от свойств оригинальных нанотруб. Эти отличия были отнесены к проявлению квантовых размерных эффектов.

Как и контролирование длин отдельных нанотруб, возможно нарезание на короткие длины и объемных образцов из однослойных нанотруб. Это было продемонстрировано в 1998 г. группой Смолли. Наиболее эффективным путем получения образцов из коротких труб (они были названы "фуллереновыми трубочками") является обработка ультразвуком нанотрубного материала в растворе серной и азотной кислот. Во время этого воздействия проявляется то, что лояльная сонохимия производит дырки на трубных поверхностях, которые затем атакуются кислотами, образуя открытые "трубочки". Смолли с коллегами показали, что эти трубочки могут быть рассортированы на различные по длинам фракции методом, известным как фракционирование в полевом потоке. Они также начинили концы таких открытых нанотруб различными функциональными группами и показали, что частицы золота могут присоединяться к фунюдионным трубным концам. Эту работу можно считать началом новой органической химии, основанной на углеродных нанотрубах.

6. Анализ Исследований

Метод дугового испарения Ииджимы, Эббесена и Аджайяна остается, несомненно, наилучшей техникой синтеза нанотруб высокого качества, но он страдает рядом недостатков. Во-первых, он велик по затратам труда и требует некоторого мастерства для достижения соответствующего уровня воспроизводимости. Во-вторых, выход в нем достаточно низкий, так как испаренного углерода осаждается на стенках камеры больше, чем на катоде, и нанотрубы загрязняются наночастицами и другими графитовыми обломками. B-третьих, это скорее "выпечка", чем непрерывный процесс, и он нелегко поддается масштабированию. Если нанотрубы когда-нибудь будут использоваться коммерчески в большом масштабе, то, по-видимому, нужно будет использовать другой способ приготовления. Прогресс в этом направлении затрудняется недостатком понимания механизма роста труб в дуге. Поэтому должны приветствоваться дальнейшие исследования, специально посвященные разъяснению механизма роста нанотруб.

Имеется еще одна серьезная слабость метода дугового испарения и всей другой токовой технологии приготовления многослойных нанотруб: они производят широкий диапазон размеров труб и структур. А это может быть проблемой не только некоторых приложений, но и недостатком в тех областях, где необходимы специфические трубные структуры, в такой, как наноэлектроника. Можно ли предсказать путь, по которому будут приготовляться трубы с определенными структурами? Возможно, это будет достигнуто творческим использованием катализаторов.

Исследователями обращается внимание на большую однородность одностенных труб, чем у их многостенных собратьев, по крайней мере в отношении их диаметров. Однако прямо используемые для синтезирования одностенных труб, методы более сложны, чем для многостенных нанотруб. Техника лазерного испарения, развитая группой Смоли, служит для производства материала наилучшего качества с наиболее высоким выходом, но требуемые для этого метода высокоэнергетические лазеры не всегда доступны для обычной лаборатории. Как и для многослойных труб, путь для продвижения вперед может включать каталитические методы, и сегодняшние исследования в этом направлении обнадеживают. В конечном счете, можно надеяться, что химики-органики смогут завершить полный синтез нанотруб. Однако надо иметь в виду, что это может быть далекой перспективой, поскольку даже полный синтез С60 до сих пор не осуществлен.

При том, что, в настоящее время нанотрубы наилучшего качества получаются при использовании методов, в которых производится также и значительное количество загрязняющего материала, важно отметить то, что существуют методы удаления этого материала. К счастью, в этой области недавно сделан существенный прогресс, и теперь имеется целый ряд методов удаления ненужных наночастиц, микропористого углерода и других загрязнений из образцов как многослойных, так и однослойных нанотруб. Были также разработаны процедуры выравнивания труб и их нарезки с контролируемыми длинами. Эти технологии позволят прогрессировать в областях, где до сих пор нехватка чистых и хорошо определяемых образцов остается серьезной проблемой.

Заключение

Метод приготовления нанотруб, описанный Инджима в 1991-м, давал относительно слабый выход, делая трудным дальнейшее исследование их структуры и свойств. Важное продвижение произошло в июле 1992-го, когда Томас Эбессен и Пуликель Аджайян, работая в той же японской лаборатории, что и Ииджима, описали метод приготовления граммовых количеств нанотруб. И снова это было неожиданное открытие: пытаясь приготовить производные фуллеренов, Эбессен и Аджайян обнаружили, что увеличение давления гелия в камере дугового испарения драматически улучшает выход нанотруб, сформированных в катодной саже. Доступность нанотруб в большом объеме привела к огромному подъему темпа исследований во всем мире.

Другой областью, привлекшей к себе ранний интерес, была идея использования углеродных нанотруб и наночастиц в качестве "молекулярных контейнеров". Вехой в этом направлении была демонстрация Аджайяном и Ииджимой того, что нанотрубы могут заполняться расплавленным свинцом и таким образом быть использованы как шаблоны для "нанопроволок". Впоследствии были развиты более контролируемые методы открывания и заполнения нанотруб, позволяющие помещать внутрь широкий диапазон материалов, включая биологические. Следствием открывания и заполнения нанотруб могут быть потрясающие свойства, которые возможно применить в катализе или в биологических сенсорах. Заполненные углеродные наночастицы могут также иметь важные приложения в таких различных областях, как магнитная запись и ядерная медицина.

Может быть, самый большой том по исследованию нанотруб должен быть посвящен их электронным свойствам. Выше уже была отмечена теоретическая работа, которая предшествовала открытию Ииджимы. Спустя короткое время после публикации Ииджимой письма в Nature 1991 г. появились две другие статьи по электронным свойствам углеродных нанотруб. MIT группа ученых и Нориаки Хамада с коллегами из лаборатории Ииджимы из Цукубы провели вычисления зонной структуры, используя модель жесткой связи, и продемонстрировали, что электронные свойства зависят как от структуры трубы, так и от ее диаметра. Эти замечательные предсказания вызвали большой интерес, но попытка определить электронные свойства нанотруб экспериментально столкнулась с большими трудностями. Но только в 1996-м были выполнены экспериментальные измерения на отдельных нанотрубах, способные подтвердить теоретические предсказания. Эти результаты позволили предположить, что нанотрубы могут стать компонентами будущих наноэлектронных приборов.

Определение механических свойств углеродных нанотруб представляло внушительные трудности, но еще раз экспериментаторы приняли этот вызов. Измерения, проводимые с помощью трансмиссионной электронной микроскопии и атомно-силовой, показали, что механические характеристики углеродных нанотруб могут быть также исключительными, как и их электронные свойства. В результате этого возрос интерес к использованию нанотруб в композитных материалах.

Ныне разнообразные другие возможные применения нанотруб вызывают к ним интерес. Например, рядом ученых исследуется проблема использования нанотруб в качестве острий для сканирующей зондовой микроскопии. С их продолговатой формой, заостренными верхушками и высокой жесткостью нанотрубы должны были идеально подходить для этой цели, и первоначальные эксперименты в этой области показали чрезвычайно впечатляющие результаты. Было также показано, что нанотрубы обладают полезными свойствами полевой эмиссии, которые могут привести к их использованию в плоских дисплеях. Повсеместно объем исследований нанотруб растет с астрономической скоростью, и их коммерческие приложения, безусловно, не заставят себя долго ждать.

Список литературы

1. П. Харрис, Углеродные нанотрубы и родственные структуры. Новые материалы ХХI века - М.: техносфера, 2003.

Размещено на Allbest.ru

Подобные документы

    Структура графита, определяющая его электрофизические свойства. Однослойные и многослойные углеродные нанотрубы. Энергия связи брома с графитовым слоем. Методика эксперимента и характеристика установки. Феноменологическое описание процесса бромирования.

    курсовая работа , добавлен 17.09.2011

    Классификация углеродных наноструктур. Модели образования фуллеренов. Сборка фуллеренов из фрагментов графита. Механизм образования углеродных наночастиц кристаллизацией жидкого кластера. Методы получения, структура и свойства углеродных нанотрубок.

    курсовая работа , добавлен 25.09.2009

    Сорбционные процессы на границе раздела фаз сорбат – сорбент. Методы получения пористых углеродных материалов. Адсорбционные методы очистки сточных вод. Основные реакции взаимодействия компонентов смесей органических материалов в процессах со-термолиза.

    дипломная работа , добавлен 21.06.2015

    Основные понятия и способы сварки трубопроводов. Выбор стали для газопровода. Подготовка кромок труб под сварку. Выбор сварочного материала. Требования к сборке труб. Квалификационные испытания сварщиков. Технология и техника ручной дуговой сварки.

    дипломная работа , добавлен 25.01.2015

    Система стабилизации скорости вращения двигателя постоянного тока как пример использования методов теории автоматического регулирования. Система стабилизации тока дуговой сталеплавильной печи, мощности резания процесса сквозного бесцентрового шлифования.

    курсовая работа , добавлен 18.01.2013

    Технология производства сварки. История развития сварочного производства. Специфика аргонно-дуговой сварки и сфера её использования. Применение, преимущества и недостатки аргонно-дуговой сварки. Сравнительная характеристика оборудования этого вида сварки.

    реферат , добавлен 18.05.2012

    Состав и свойства стали. Сведения о ее свариваемости. Технология получения сварного соединения внахлёст двух листов сваркой ручной дуговой и в среде защитных газов плавящимся электродом. Выбор сварочных материалов и источников питания сварочной дуги.

    курсовая работа , добавлен 28.05.2015

    Определение свариваемости применяемых материалов, подбор присадочных материалов и оборудования. Узел приварки верхнего днища и верхней обечайки. Расчет режима ручной дуговой сварки. Карта технологического процесса сварки узла А Ar-С17 по ГОСТ 14771-76.

    курсовая работа , добавлен 20.02.2013

    Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат , добавлен 13.05.2011

    Виды и характеристики пластмассовых труб, обоснование выбора способа их соединения, принципы стыковки. Общие правила стыковой сварки пластиковых и полипропиленовых труб. Технология сварки враструб. Принципы и этапы монтажа полипропиленовых труб.

© 2024 skudelnica.ru -- Любовь, измена, психология, развод, чувства, ссоры